Advertisement

Nonequilibrium Many-Body Quantum Dynamics: From Full Random Matrices to Real Systems

  • Lea F. SantosEmail author
  • Eduardo Jonathan Torres-Herrera
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

We present an overview of our studies on the nonequilibrium dynamics of quantum systems that have many interacting particles. Our emphasis is on systems that show strong level repulsion, referred to as chaotic systems. We discuss how full random matrices can guide and support our studies of realistic systems. We show that features of the dynamics can be anticipated from a detailed analysis of the spectrum and the structure of the initial state projected onto the energy eigenbasis. On the other way round, if we only have access to the dynamics, we can use it to infer the properties of the spectrum of the system. Our focus is on the survival probability, but results for other observables, such as the spin density imbalance and Shannon entropy are also mentioned.

Notes

Acknowledgements

L.F.S. was supported by the NSF grant No. DMR-1603418. E.J.T.-H. acknowledges funding from CONACyT and VIEP-BUAP, Mexico. He is also grateful to LNS-BUAP for allowing use of their supercomputing facility.

References

  1. 1.
    F. Borgonovi, F.M. Izrailev, L.F. Santos, V.G. Zelevinsky, Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626(1), 00 (2016).  https://doi.org/10.1016/j.physrep.2016.02.005
  2. 2.
    C. Gogolin, J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  3. 3.
    L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016).  https://doi.org/10.1080/00018732.2016.1198134
  4. 4.
    D.J. Luitz, Y.B. Lev, The ergodic side of the many-body localization transition. Ann. Phys. 529, 1600350 (2017). Berlin.  https://doi.org/10.1002/andp.201600350
  5. 5.
    V. Giovannetti, S. Lloyd, L. Maccone, Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003).  https://doi.org/10.1103/PhysRevA.67.052109
  6. 6.
    M. Akila, D. Waltner, B. Gutkin, P. Braun, T. Guhr, Semiclassical identification of periodic orbits in a quantum many-body system. Phys. Rev. Lett. 118, 164101 (2017).  https://doi.org/10.1103/PhysRevLett.118.164101
  7. 7.
    O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984).  https://doi.org/10.1103/PhysRevLett.52.1
  8. 8.
    G. Casati, F. Valz-Gris, I. Guarnieri, On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Nuovo Cimento 28, 279 (1980). 1971–1985.  https://doi.org/10.1007/BF02798790
  9. 9.
    M.C. Gutzwiller, Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343 (1971).  https://doi.org/10.1063/1.1665596
  10. 10.
    V. Strutinskii, A. Magner, Quasiclassical theory of nuclear shell structure (Classical motion). Sov. J. Part. Nucl. 7, 138 (1976). http://pepan.jinr.ru/pepan/eng/archive/1/1970s/1976/2
  11. 11.
    M.L. Mehta, Random Matrices (Academic Press, Boston, 2004). https://www.elsevier.com/books/random-matrices/lal-mehta/978-0-12-088409-4, ISBN 9780120884094
  12. 12.
    T. Guhr, A. Mueller-Gröeling, H.A. Weidenmüller, Random matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189 (1998).  https://doi.org/10.1016/S0370-1573(97)00088-4
  13. 13.
    E.P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels. Proc. Cambridge Phil. Soc. 47, 790 (1951).  https://doi.org/10.1017/S0305004100027237
  14. 14.
    E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325 (1958).  https://doi.org/10.2307/1970008
  15. 15.
    T. Scaffidi, E. Altman, Semiclassical theory of many-body quantum chaos and its bound. arXiv:1711.04768
  16. 16.
    E. Bianchi, L. Hackl, N. Yokomizo, Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate. J. High Energy Phys. 2018, 25 (2018).  https://doi.org/10.1007/JHEP03(2018)025
  17. 17.
    M. Schmitt, D. Sels, S. Kehrein, A. Polkovnikov, Semiclassical echo dynamics in the Sachdev-Ye-Kitaev model. arXiv:1802.06796
  18. 18.
    F. Borgonovi, F.M. Izrailev, L.F. Santos, Exponentially fast dynamics in the Fock space of chaotic many-body systems.  https://doi.org/10.1103/PhysRevE.99.010101
  19. 19.
    C. Khripkov, A. Vardi, D. Cohen, Semiclassical theory of strong localization for quantum thermalization. Phys. Rev. E 97, 022127 (2018).  https://doi.org/10.1103/PhysRevE.97.022127
  20. 20.
    R.A. Jalabert, H.M. Pastawski, Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490 (2001).  https://doi.org/10.1103/PhysRevLett.86.2490
  21. 21.
    T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Dynamics of loschmidt echoes and fidelity decay. Phys. Rep. 435, 33 (2006).  https://doi.org/10.1016/j.physrep.2006.09.003
  22. 22.
    E.B. Rozenbaum, S. Ganeshan, V. Galitski, Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system. Phys. Rev. Lett. 118, 086801 (2017).  https://doi.org/10.1103/PhysRevLett.118.086801
  23. 23.
    K. Hashimoto, K. Murata, R. Yoshii, Out-of-time-order correlators in quantum mechanics. J. High Energy Phys. 2017, 138 (2017).  https://doi.org/10.1007/JHEP10(2017)138
  24. 24.
    E.B. Rozenbaum, S. Ganeshan, V. Galitski, Universal level statistics of the out-of-time-ordered operator. arXiv:1801.10591
  25. 25.
    J. Chávez-Carlos, B.L. del Carpio, M.A. Bastarrachea-Magnani, P. Stránský, S. Lerma-Hernández, L.F. Santos, J.G. Hirsch, Quantum and classical Lyapunov exponents in atom-field interaction systems. Phys. Rev. Lett. 122, 024101 (2019).  https://doi.org/10.1103/PhysRevLett.122.024101
  26. 26.
    D.J. Luitz, Y. Bar Lev, Information propagation in isolated quantum systems. Phys. Rev. B 96, 020406 (2017).  https://doi.org/10.1103/PhysRevB.96.020406
  27. 27.
    E.J. Torres-Herrera, L.F. Santos, Quench dynamics of isolated many-body quantum systems. Phys. Rev. A 89, 043620 (2014).  https://doi.org/10.1103/PhysRevA.89.043620
  28. 28.
    E.J. Torres-Herrera, M. Vyas, L.F. Santos, General features of the relaxation dynamics of interacting quantum systems. New J. Phys. 16, 063010 (2014).  https://doi.org/10.1088/1367-2630/16/6/063010
  29. 29.
    E.J. Torres-Herrera, L.F. Santos, Local quenches with global effects in interacting quantum systems. Phys. Rev. E 89, 062110 (2014).  https://doi.org/10.1103/PhysRevE.89.062110
  30. 30.
    E.J. Torres-Herrera, L.F. Santos, Nonexponential fidelity decay in isolated interacting quantum systems. Phys. Rev. A 90, 033623 (2014).  https://doi.org/10.1103/PhysRevA.90.033623
  31. 31.
    E.J. Torres-Herrera, D. Kollmar, L.F. Santos, Relaxation and thermalization of isolated many-body quantum systems. Phys. Scr. T 165, 014018 (2015).  https://doi.org/10.1088/0031-8949/2015/T165/014018
  32. 32.
    E.J. Torres-Herrera, L.F. Santos, Isolated many-body quantum systems far from equilibrium: Relaxation process and thermalization, in AIP Conference Proceedings, vol. 1619, ed. by P. Danielewicz, V. Zelevinsky (APS, East Lansing, Michigan, 2014), pp.171–180.  https://doi.org/10.1063/1.4899233
  33. 33.
    E.J. Torres-Herrera, J. Karp, M. Távora, L.F. Santos, Realistic many-body quantum systems versus full random matrices: Static and dynamical properties. Entropy 18, 359 (2016).  https://doi.org/10.3390/e18100359
  34. 34.
    L.F. Santos, F. Borgonovi, F.M. Izrailev, Chaos and statistical relaxation in quantum systems of interacting particles. Phys. Rev. Lett. 108, 094102 (2012).  https://doi.org/10.1103/PhysRevLett.108.094102
  35. 35.
    L.F. Santos, F. Borgonovi, F.M. Izrailev, Onset of chaos and relaxation in isolated systems of interacting spins-1/2: energy shell approach. Phys. Rev. E 85, 036209 (2012).  https://doi.org/10.1103/PhysRevE.85.036209
  36. 36.
    E.J. Torres-Herrera, L.F. Santos, Extended nonergodic states in disordered many-body quantum systems. Ann. Phys. 1600284 (2017). Berlin.  https://doi.org/10.1002/andp.201600284
  37. 37.
    E.J. Torres-Herrera, L.F. Santos, Dynamical manifestations of quantum chaos: correlation hole and bulge. Philos. Trans. Royal Soc. A 375 (2017).  https://doi.org/10.1098/rsta.2016.0434
  38. 38.
    E.J. Torres-Herrera, A.M. García-García, L.F. Santos, Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B 97, 060303(R) (2018).  https://doi.org/10.1103/PhysRevB.97.060303
  39. 39.
    E.J. Torres-Herrera, L.F. Santos, Dynamics at the many-body localization transition, Phys. Rev. B 92, 014208 (2015).  https://doi.org/10.1103/PhysRevB.92.014208
  40. 40.
    E.J. Torres-Herrera, M. Távora, L.F. Santos, Survival probability of the néel state in clean and disordered systems: an overview. Braz. J. Phys. 46, 239 (2016).  https://doi.org/10.1007/s13538-015-0366-3
  41. 41.
    M. Távora, E.J. Torres-Herrera, L.F. Santos, Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization. Phys. Rev. A 94, 041603 (2016).  https://doi.org/10.1103/PhysRevA.94.041603
  42. 42.
    M. Távora, E.J. Torres-Herrera, L.F. Santos, Power-law decay exponents: A dynamical criterion for predicting thermalization. Phys. Rev. A 95, 013604 (2017).  https://doi.org/10.1103/PhysRevA.95.013604
  43. 43.
    L.F. Santos, E.J. Torres-Herrera, Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium, in AIP Conference Proceedings, vol. 1912 (2017), p. 020015.  https://doi.org/10.1063/1.5016140
  44. 44.
    L.F. Santos, E.J. Torres-Herrera, in Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, ed. by M. Edelman, E.E.N. Macau, M.A.F. Sanjuan (Springer International Publishing, Cham, 2018), pp. 231–260.  https://doi.org/10.1007/978-3-319-68109-2
  45. 45.
    M. Schiulaz, E.J. Torres-Herrera, L.F. Santos, Thouless and relaxation time scales in many-body quantum systems. arXiv:1807.07577
  46. 46.
    L. Leviandier, M. Lombardi, R. Jost, J.P. Pique, Fourier transform: a tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56, 2449 (1986).  https://doi.org/10.1103/PhysRevLett.56.2449
  47. 47.
    T. Guhr, H. Weidenmüller, Correlations in anticrossing spectra and scattering theory. analytical aspects. Chem. Phys. 146, 21 (1990).  https://doi.org/10.1016/0301-0104(90)90003-R
  48. 48.
    J. Wilkie, P. Brumer, Time-dependent manifestations of quantum chaos. Phys. Rev. Lett. 67, 1185 (1991).  https://doi.org/10.1103/PhysRevLett.67.1185
  49. 49.
    Y. Alhassid, R.D. Levine, Spectral autocorrelation function in the statistical theory of energy levels. Phys. Rev. A 46, 4650 (1992).  https://doi.org/10.1103/PhysRevA.46.4650
  50. 50.
    T. Gorin, T.H. Seligman, Signatures of the correlation hole in total and partial cross sections. Phys. Rev. E 65, 026214 (2002).  https://doi.org/10.1103/PhysRevE.65.026214
  51. 51.
    F.J. Dyson, The threefold way. algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199 (1962).  https://doi.org/10.1063/1.1703863
  52. 52.
    E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548 (1955).  https://doi.org/10.2307/1970079
  53. 53.
    A. Gubin, L.F. Santos, Quantum chaos: An introduction via chains of interacting spins 1/2. Am. J. Phys. 80, 246 (2012).  https://doi.org/10.1119/1.3671068
  54. 54.
    F. Wegner, Inverse participation ratio in 2 + \(\varepsilon \) dimensions. Z. Phys. B 36, 209 (1980).  https://doi.org/10.1007/BF01325284
  55. 55.
    L.F. Santos, Integrability of a disordered Heisenberg spin-1/2 chain. J. Phys. A 37, 4723 (2004).  https://doi.org/10.1088/0305-4470/37/17/004
  56. 56.
    L.F. Santos, G. Rigolin, C.O. Escobar, Entanglement versus chaos in disordered spin systems. Phys. Rev. A 69, 042304 (2004).  https://doi.org/10.1103/PhysRevA.69.042304
  57. 57.
    L.F. Santos, M.I. Dykman, M. Shapiro, F.M. Izrailev, Strong many-particle localization and quantum computing with perpetually coupled qubits. Phys. Rev. A 71, 012317 (2005).  https://doi.org/10.1103/PhysRevA.71.012317
  58. 58.
    F. Dukesz, M. Zilbergerts, L.F. Santos, Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement. New J. Phys. 11, 043026 (2009).  https://doi.org/10.1088/1367-2630/11/4/043026
  59. 59.
    A. Kartiek, A. Ehud, D. Eugene, G. Sarang, A.H. Huse, K. Michael, Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529, 1600326 (2017). Berlin.  https://doi.org/10.1002/andp.201600326
  60. 60.
    T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Random-matrix physics – spectrum and strength fluctuations. Rev. Mod. Phys. 53, 385 (1981).  https://doi.org/10.1103/RevModPhys.53.385
  61. 61.
    M. Schiulaz, M. Távora, L.F. Santos, From few- to many-body quantum systems.  https://doi.org/10.1088/2058-9565/aad913
  62. 62.
    P.R. Zangara, A.D. Dente, E.J. Torres-Herrera, H.M. Pastawski, A. Iucci, L.F. Santos, Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E 88, 032913 (2013).  https://doi.org/10.1103/PhysRevE.88.032913
  63. 63.
    M.V. Berry, M. Tabor, Proc. R. Soc. Lond. A 356, 375 (1977).  https://doi.org/10.1098/rspa.1977.0140
  64. 64.
    C.L. Bertrand, A.M. García-García, Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition. Phys. Rev. B 94, 144201 (2016).  https://doi.org/10.1103/PhysRevB.94.144201
  65. 65.
    J.G. Muga, A. Ruschhaupt, A. del Campo, Time in Quantum Mechanics, vol. 2 (Springer, London, 2009).  https://doi.org/10.1007/978-3-642-03174-8
  66. 66.
    A. Erdélyi, Asymptotic expansions of fourier integrals involving logarithmic singularities. J. Soc. Indust. Appl. Math. 4, 38 (1956).  https://doi.org/10.1137/0104003
  67. 67.
    K. Urbanowski, General properties of the evolution of unstable states at long times. Eur. Phys. J. D 54, 25 (2009).  https://doi.org/10.1140/epjd/e2009-00165-x
  68. 68.
    E.J. Torres-Herrera, L.F. Santos, Signatures of chaos and thermalization in the dynamics of many-body quantum systems. arXiv:1804.06401
  69. 69.
    A. del Campo, J. Molina Vilaplana, L.F. Santos, J. Sonner, Decay of a thermofield-double state in chaotic quantum systems.  https://doi.org/10.1140/epjst/e2018-00083-5
  70. 70.
    J.P. Pique, Y. Chen, R.W. Field, J.L. Kinsey, Chaos and dynamics on 0.5-300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum. Phys. Rev. Lett. 58, 475 (1987).  https://doi.org/10.1103/PhysRevLett.58.475
  71. 71.
    U. Hartmann, H. Weidenmüller, T. Guhr, Correlations in anticrossing spectra and scattering theory: Numerical simulations. Chem. Phys. 150, 311 (1991).  https://doi.org/10.1016/0301-0104(91)87105-5
  72. 72.
    A. Delon, R. Jost, M. Lombardi, NO\(_2\) jet cooled visible excitation spectrum: Vibronic chaos induced by the X̃\(^2\)A\(_1\)\(^2\)B\(_2\) interaction. J. Chem. Phys. 95, 5701 (1991).  https://doi.org/10.1063/1.461620
  73. 73.
    M. Lombardi, T.H. Seligman, Universal and nonuniversal statistical properties of levels and intensities for chaotic rydberg molecules. Phys. Rev. A 47, 3571 (1993).  https://doi.org/10.1103/PhysRevA.47.3571
  74. 74.
    A. Kudrolli, S. Sridhar, A. Pandey, R. Ramaswamy, Signatures of chaos in quantum billiards: Microwave experiments. Phys. Rev. E 49, R11 (1994).  https://doi.org/10.1103/PhysRevE.49.R11
  75. 75.
    H. Alt, H.-D. Gräf, T. Guhr, H.L. Harney, R. Hofferbert, H. Rehfeld, A. Richter, P. Schardt, Correlation-hole method for the spectra of superconducting microwave billiards. Phys. Rev. E 55, 6674 (1997).  https://doi.org/10.1103/PhysRevE.55.6674
  76. 76.
    L. Michaille, J.-P. Pique, Influence of experimental resolution on the spectral statistics used to show quantum chaos: the case of molecular vibrational chaos. Phys. Rev. Lett. 82, 2083 (1999).  https://doi.org/10.1103/PhysRevLett.82.2083
  77. 77.
    T. Gorin, T. Prosen, T.H. Seligman, A random matrix formulation of fidelity decay. New J. Phys. 6, 20 (2004).  https://doi.org/10.1088/1367-2630/6/1/020
  78. 78.
    Y. Alhassid, Y.V. Fyodorov, T. Gorin, W. Ihra, B. Mehlig, Fano interference and cross-section fluctuations in molecular photodissociation. Phys. Rev. A 73, 042711 (2006).  https://doi.org/10.1103/PhysRevA.73.042711
  79. 79.
    F. Leyvraz, A. García, H. Kohler, T.H. Seligman, Fidelity under isospectral perturbations: a random matrix study. J. Phys. A 46, 275303 (2013).  https://doi.org/10.1088/1751-8113/46/27/275303
  80. 80.
    D.J. Luitz, N. Laflorencie, F. Alet, Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 93, 060201 (2016).  https://doi.org/10.1103/PhysRevB.93.060201
  81. 81.
    M. Lee, T.R. Look, S.P. Lim, D.N. Sheng, Many-body localization in spin chain systems with quasiperiodic fields. Phys. Rev. B 96, 075146 (2017).  https://doi.org/10.1103/PhysRevB.96.075146

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lea F. Santos
    • 1
    Email author
  • Eduardo Jonathan Torres-Herrera
    • 2
  1. 1.Department of PhysicsYeshiva UniversityNew YorkUSA
  2. 2.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMéxico

Personalised recommendations