Advertisement

Characterizing Irreversibility in Open Quantum Systems

  • Tiago B. Batalhão
  • Stefano Gherardini
  • Jader P. Santos
  • Gabriel T. Landi
  • Mauro PaternostroEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Irreversibility is a fundamental concept with important implications at many levels. It pinpoints the fundamental difference between the intrinsically reversible microscopic equations of motion and the unidirectional arrow of time that emerges at the macroscopic level. More pragmatically, a full quantification of the degree of irreversibility of a given process can help in the characterisation of the performance of thermo-machines operating at the quantum level. Here, we review the concept of entropy production, which is commonly intended as the measure of thermodynamic irreversibility of a process, pinpointing the features and shortcomings of its current formulation.

Notes

Acknowledgements

TBB acknowledges support from National Research Foundation (Singapore), Ministry of Education (Singapore), and United States Air Force Office of Scientific Research (FA2386-15-1-4082). He acknowledges helpful discussions with R. M. Serra and his group at Universidade Federal do ABC, while developing some of the work reported in this chapter as part of his Ph.D. thesis. SG gratefully thanks Filippo Caruso, Stefano Ruffo, Andrea Trombettoni, and Matthias M. Mueller for useful discussions and their support, especially during the last period of his PhD thesis. GTL would like to acknowledge the São Paulo Research Foundation, under grant number 2016/08721-7. JPS would like to acknowledge the financial support from the CAPES (PNPD program) for the postdoctoral grant. MP thanks the DfE-SFI Investigator Programme (grant 15/IA/2864), the Royal Society Newton Mobility Grant NI160057, and the H2020 collaborative Project TEQ (grant no. 766900).

References

  1. 1.
    A.S. Eddington, The Nature of the Physical World (Folcroft Library Editions, Delaware, 1935)Google Scholar
  2. 2.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931).  https://doi.org/10.1103/PhysRev.37.405
  3. 3.
    L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931).  https://doi.org/10.1103/PhysRev.38.2265
  4. 4.
    S. Machlup, L. Onsager, Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 91, 1512 (1953).  https://doi.org/10.1103/PhysRev.91.1512
  5. 5.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics, 1st edn. (North-Holland Physics Publishing, Amsterdam, 1961)Google Scholar
  6. 6.
    L. Tisza, I. Manning, Fluctuations and irreversible thermodynamics. Phys. Rev. 105, 1695 (1957).  https://doi.org/10.1103/PhysRev.105.1695
  7. 7.
    J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571 (1976).  https://doi.org/10.1103/RevModPhys.48.571
  8. 8.
    T. Tomé, M.J. de Oliveira, Entropy production in nonequilibrium systems at stationary states. Phys. Rev. Lett. 108, 020601 (2012).  https://doi.org/10.1103/PhysRevLett.108.020601
  9. 9.
    T. Tomé, M.J. de Oliveira, Entropy production in irreversible systems described by a Fokker-Planck equation. Phys. Rev. E 82, 021120 (2010).  https://doi.org/10.1103/PhysRevE.82.021120
  10. 10.
    R.E. Spinney, I.J. Ford, Entropy production in full phase space for continuous stochastic dynamics. Phys. Rev. E 85, 051113 (2012).  https://doi.org/10.1103/PhysRevE.85.051113
  11. 11.
    G.T. Landi, T. Tomé, M.J. de Oliveira, Entropy production in linear Langevin systems. J. Phys. A 46, 395001 (2013).  https://doi.org/10.1088/1751-8113/46/39/395001
  12. 12.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  13. 13.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993).  https://doi.org/10.1103/PhysRevLett.71.2401
  14. 14.
    D.J. Evans, D.J. Searles, Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645 (1994).  https://doi.org/10.1103/PhysRevE.50.1645
  15. 15.
    G. Gallavotti, E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995).  https://doi.org/10.1103/PhysRevLett.74.2694
  16. 16.
    C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690
  17. 17.
    C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56, 5018 (1997).  https://doi.org/10.1103/PhysRevE.56.5018
  18. 18.
    G.E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481 (1998).  https://doi.org/10.1023/A:1023208217925
  19. 19.
    G.E. Crooks, Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361 (2000).  https://doi.org/10.1103/PhysRevE.61.2361
  20. 20.
    J. Goold, F. Plastina, A. Gambassi, A. Silva, The role of quantum work statistics in many-body physics (2018). arXiv:1804.02805
  21. 21.
    M. Campisi, P. Hänggi, Fluctuation, dissipation and the arrow of time. Entropy 13, 2024–2035 (2011).  https://doi.org/10.3390/e13122024
  22. 22.
    C. Jarzynski, Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Ann. Rev. Condens. Mat. Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506
  23. 23.
    R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Dissipation: the phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007).  https://doi.org/10.1103/PhysRevLett.98.080602
  24. 24.
    S. Vaikuntanathan, C. Jarzynski, Dissipation and lag in irreversible processes. Europhys. Lett. 87, 60005 (2009).  https://doi.org/10.1209/0295-5075/87/60005
  25. 25.
    J.M.R. Parrondo, C. Van den Broeck, R. Kawai, Entropy production and the arrow of time. New J. Phys. 11, 073008 (2009).  https://doi.org/10.1088/1367-2630/11/7/073008
  26. 26.
    G.T. Landi, T. Tomé, M.J. de Oliveira, Entropy production in linear Langevin systems. J. Phys. A Math. Theor. 46, 395001 (2013).  https://doi.org/10.1088/1751-8113/46/39/395001
  27. 27.
    M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, G. Landi, F.L. Semião, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara, M. Paternostro, Experimental determination of irreversible entropy production in out-of-equilibrium mesoscopic quantum systems. Phys. Rev. Lett. 121, 160604 (2018).  https://doi.org/10.1103/PhysRevLett.121.160604
  28. 28.
    F. Schloegl, Stochastic measures in nonequilibrium themrodynamics. Phys. Rep. 62, 267 (1980).  https://doi.org/10.1016/0370-1573(80)90019-8
  29. 29.
    H. Spohn, J.L. Lebowitz, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Advances in Chemical Physics: For Ilya Prigogine (Wiley, New Jercy, 2007).  https://doi.org/10.1002/9780470142578.ch2
  30. 30.
    S. Deffner, E. Lutz, Generalized clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010).  https://doi.org/10.1103/PhysRevLett.105.170402
  31. 31.
    S. Deffner, E. Lutz, Nonequilibrium Entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011).  https://doi.org/10.1103/PhysRevLett.107.140404
  32. 32.
    S. Gherardini, M.M. Mueller, A. Trombettoni, S. Ruffo, F. Caruso, Reconstructing quantum entropy production to probe irreversibility and correlations. Quantum Sci. Technol. 3(3), 035013 (2018).  https://doi.org/10.1088/2058-9565/aac7e1
  33. 33.
    J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco, C. Bustamante, Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832 (2002).  https://doi.org/10.1126/science.1071152
  34. 34.
    D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231 (2005).  https://doi.org/10.1038/nature04061
  35. 35.
    V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 070603 (2006).  https://doi.org/10.1103/PhysRevLett.96.070603
  36. 36.
    J. Gieseler, R. Quidant, C. Dellago, L. Novotny, Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotech. 9, 358 (2014).  https://doi.org/10.1038/nnano.2014.40
  37. 37.
    T.B. Batalhão, A.M. Souza, R.S. Sarthour, I.S. Oliveira, M. Paternostro, E. Lutz, R.M. Serra, Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015).  https://doi.org/10.1103/PhysRevLett.115.190601
  38. 38.
    S. Ciliberto, R. Gomez-Solano, A. Petrosyan, Fluctuations, linear response, and currents in out-of-equilibrium systems. Ann. Rev. Condens. Matter Phys. 4, 235 (2013).  https://doi.org/10.1146/annurev-conmatphys-030212-184240
  39. 39.
    S. Gherardini, Noise as a Resource. Ph.D. thesis, University of Florence (Italy, 2018). arXiv:1805.01800
  40. 40.
    M. Sozzi, Discrete Symmetries and CP Violation (Oxford University Press, Oxford, 2008)Google Scholar
  41. 41.
    G. Crooks, Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008).  https://doi.org/10.1103/PhysRevA.77.034101
  42. 42.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Nonequilibrium potential and fluctuation theorems for quantum maps. Phys. Rev. E 92, 032129 (2015).  https://doi.org/10.1103/PhysRevE.92.032129
  43. 43.
    T. Sagawa, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, ed. by N. Mikio, et al. (World Scientific Publishing Co. Pte. Ltd, Singapore, 2013)Google Scholar
  44. 44.
    T. Cover, J. Thomas, Elements of Information Theory (Wiley-Interscience, New Jersey, 2006)Google Scholar
  45. 45.
    R. Kawai, J.M.R. Parrondo, C. Van der Broeck, Dissipation: the phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007).  https://doi.org/10.1103/PhysRevLett.98.080602
  46. 46.
    S. Gherardini, et al. Nonequilibrium quantum-heat statistics under stochastic projective measurements. Phys. Rev. E 98(3), 032108 (2018).  https://doi.org/10.1103/PhysRevE.98.032108
  47. 47.
    H.-P. Breuer, Quantum jumps and entropy production. Phys. Rev. A 68, 032105 (2003).  https://doi.org/10.1103/PhysRevA.68.032105
  48. 48.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  49. 49.
    S. Abe, Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification. Phys. Rev. A 68, 032302 (2003).  https://doi.org/10.1103/PhysRevA.68.032302
  50. 50.
    K.M.R. Audenaert, Quantum skew divergence. J. Math. Phys. 55, 112202 (2014).  https://doi.org/10.1063/1.4901039
  51. 51.
    J.P. Santos, G. Landi, M. Paternostro, Wigner entropy production rate. Phys. Rev. Lett. 118, 220601 (2017).  https://doi.org/10.1103/PhysRevLett.118.220601
  52. 52.
    G. Adesso, D. Girolami, A. Serafini, Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012).  https://doi.org/10.1103/PhysRevLett.109.190502
  53. 53.
    M. Brunelli, M. Paternostro, Irreversibility and correlations in coupled quantum oscillators (2016). arXiv:1610.01172v1

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tiago B. Batalhão
    • 1
    • 2
  • Stefano Gherardini
    • 3
  • Jader P. Santos
    • 4
  • Gabriel T. Landi
    • 4
  • Mauro Paternostro
    • 5
    Email author
  1. 1.Singapore University of Technology and DesignSingaporeSingapore
  2. 2.Centre for Quantum Technologies, National University of SingaporeSingaporeSingapore
  3. 3.Department of Physics and Astronomy, LENS and QSTARUniversity of FlorenceSesto FiorentinoItaly
  4. 4.Instituto de Física da Universidade de Saõ PauloSão PauloBrazil
  5. 5.School of Mathematics and PhysicsCentre for Theoretical Atomic, Molecular, Queen’s University BelfastBelfastUK

Personalised recommendations