Advertisement

Work, Heat and Entropy Production Along Quantum Trajectories

  • Cyril ElouardEmail author
  • M. Hamed Mohammady
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Quantum open systems evolve according to completely positive, trace preserving maps acting on the density operator, which can equivalently be unraveled in term of so-called quantum trajectories. These stochastic sequences of pure states correspond to the actual dynamics of the quantum system during single realizations of an experiment in which the system’s environment is monitored. In this chapter, we present an extension of stochastic thermodynamics to the case of open quantum systems, which builds on the analogy between the quantum trajectories and the trajectories in phase space of classical stochastic thermodynamics. We analyze entropy production, work and heat exchanges at the trajectory level, identifying genuinely quantum contributions due to decoherence induced by the environment. We present three examples: the thermalization of a quantum system, the fluorescence of a driven qubit and the continuous monitoring of a qubit’s observable.

Notes

Acknowledgements

C.E. acknowledges support by the US Department of Energy grante No. DE-SC0017890 and thanks Chapman University and the Institute for Quantum Studies for hospitality during this project. M.H.M. acknowledges support from EPSRC (Grant No. EP/P030815/1).

References

  1. 1.
    K. Mølmer, Y. Castin, J. Dalibard, Monte carlo wave-function method in quantum optics. J. Optical Soc. Am. B 10(3), 524–538 (1993). ISSN 0740-3224,  https://doi.org/10.1364/josab.10.000524
  2. 2.
    H.M. Wiseman, Quantum trajectories and quantum measurement theory. Q Semiclassical Opt.: J. Eur. Opt. Soc. Part B 8(1), 205–222 (1996). ISSN 1355-5111,  https://doi.org/10.1088/1355-5111/8/1/015
  3. 3.
    T.A. Brun, A simple model of quantum trajectories. Am. J. Phys. 70(7), 719–737 (2002). ISSN 0002-9505,  https://doi.org/10.1119/1.1475328
  4. 4.
    W. Nagourney, J. Sandberg, H. Dehmelt, Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56(26), 2797–2799 (1986). ISSN 0031-9007,  https://doi.org/10.1103/physrevlett.56.2797
  5. 5.
    Th. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek, Observation of quantum jumps. Phys. Rev. Lett. 57(14), 1696–1698 (1986). ISSN 0031-9007,  https://doi.org/10.1103/physrevlett.57.1696
  6. 6.
    R.G. Hulet, D.J. Wineland, J.C. Bergquist, W.M. Itano, Precise test of quantum jump theory. Phys. Rev. A 37(11), 4544–4547 (1988). ISSN 0556-2791,  https://doi.org/10.1103/physreva.37.4544
  7. 7.
    S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U.B. Hoff, M. Brune, J.-M. Raimond, S. Haroche, Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446(7133), 297–300 (2007). ISSN 0028-0836.  https://doi.org/10.1038/nature05589
  8. 8.
    K.W. Murch, S.J. Weber, C. Macklin, I. Siddiqi, Observing single quantum trajectories of a superconducting quantum bit. Nature 502(7470), 211–214 (2013). ISSN 0028-0836,  https://doi.org/10.1038/nature12539
  9. 9.
    P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M.H. Devoret, F. Mallet, B. Huard, Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X 3(2), 021008+ (2013). ISSN 2160-3308  https://doi.org/10.1103/physrevx.3.021008
  10. 10.
    G. de Lange, D. Ristè, M.J. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, A. Wallraff, R.N. Schouten, L. DiCarlo, Reversing quantum trajectories with analog feedback. Phys. Rev. Lett. 112(8) (2014). ISSN 0031-9007,  https://doi.org/10.1103/physrevlett.112.080501
  11. 11.
    R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A: Math. General 12(5), L103–L107 (1979). ISSN 0305-4470,  https://doi.org/10.1088/0305-4470/12/5/007
  12. 12.
    U. Seifert, Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64(3–4), 423–431 (2008).  https://doi.org/10.1140/epjb/e2008-00001-9
  13. 13.
    K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010).  https://doi.org/10.1007/978-3-642-05411-2, ISBN 9783642054112
  14. 14.
    C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997). ISSN 0031-9007,  https://doi.org/10.1103/physrevlett.78.2690
  15. 15.
    G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721–2726 (1999). ISSN 1063-651X,  https://doi.org/10.1103/physreve.60.2721
  16. 16.
    U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95(4), 040602+ (2005).  https://doi.org/10.1103/physrevlett.95.040602
  17. 17.
    F.W.J. Hekking, J.P. Pekola, Quantum jump approach for work and dissipation in a two-level system. Phys. Rev. Lett. 111, 093602+ (2013).  https://doi.org/10.1103/physrevlett.111.093602
  18. 18.
    J.J. Alonso, E. Lutz, A. Romito, Thermodynamics of weakly measured quantum systems. Phys. Rev. Lett. 116, 080403+ (2016).  https://doi.org/10.1103/physrevlett.116.080403
  19. 19.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Nonequilibrium potential and fluctuation theorems for quantum maps. Phys. Rev. E 92(3), 032129 (2015). ISSN 1539-3755,  https://doi.org/10.1103/PhysRevE.92.032129
  20. 20.
    C. Elouard, D.A. Herrera-Martí, M. Clusel, A. Auffèves, The role of quantum measurement in stochastic thermodynamics. npj Quantum Inf. 3(1), 9 (2017). ISSN 2056-6387,  https://doi.org/10.1038/s41534-017-0008-4
  21. 21.
    S. Gherardini et al., Reconstructing quantum entropy production to probe irreversibility and correlations, Quantum Sci. Technol. 3(3), 035013 (2018).  https://doi.org/10.1088/2058-9565/aac7e1
  22. 22.
    J. Dressel, A. Chantasri, A.N. Jordan, A.N. Korotkov, Arrow of time for continuous quantum measurement. Phys. Rev. Lett. 119(22) (2017).  https://doi.org/10.1103/physrevlett.119.220507
  23. 23.
    S.K. Manikandan, A.N. Jordan, Time reversal symmetry of generalized quantum measurements with past and future boundary conditions (2018), arXiv:1801.04364
  24. 24.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  25. 25.
    T. Heinosaari, M. Ziman, The Mathematical Language of Quantum Theory (Cambridge University Press, Cambridge, 2011).  https://doi.org/10.1017/CBO9781139031103.001
  26. 26.
    W.F. Stinespring, Positive functions on \(c^*\)-algebras. Proc. Am. Math. Soc. 6(2), 211–216 (1955).  https://doi.org/10.2307/2032342
  27. 27.
    K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983).  https://doi.org/10.1007/3-540-12732-1
  28. 28.
    P. Busch, M. Grabowski, P.J. Lahti, Operational Quantum Physics (Springer, Berlin, 1995).  https://doi.org/10.1007/978-3-540-49239-9
  29. 29.
    P. Busch, P.J. Lahti, J.-P. Pellonpää, K. Ylinen, Quantum Measurement (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-43389-9
  30. 30.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010). http://www.worldcat.org/isbn/9780521804424, ISBN 9781107424159
  31. 31.
    K. Jacobs, D.A. Steck, A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47(5), 279–303 (2006).  https://doi.org/10.1080/00107510601101934
  32. 32.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions : Basic Process and Applications (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).  https://doi.org/10.1002/9783527617197
  33. 33.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976).  https://doi.org/10.1007/bf01608499. ISSN 0010-3616ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, Oxford, 2006).  https://doi.org/10.1093/acprof:oso/9780198509141.001.0001
  35. 35.
    T.B.L. Kist, M. Orszag, T.A. Brun, L. Davidovich, Stochastic schrödinger equations in cavity qed: physical interpretation and localization. J. Opt. B: Quantum Semiclassical Opt. 1(2), 251–263 (1999).  https://doi.org/10.1088/1464-4266/1/2/009, ISSN 1464-4266
  36. 36.
    T.A. Brun, Continuous measurements, quantum trajectories, and decoherent histories. Phys. Rev. A 61(4) (2000).  https://doi.org/10.1103/physreva.61.042107, ISSN 1050-2947
  37. 37.
    C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004).  https://doi.org/10.1007/978-3-662-04103-1, ISBN 978-3-662-04105-5
  38. 38.
    G.E. Crooks, Quantum operation time reversal. Phys. Rev. A 77, 034101+ (2008).  https://doi.org/10.1103/physreva.77.034101
  39. 39.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Nonequilibrium potential and fluctuation theorems for quantum maps. Phys. Rev. E, 92(3) (2015).  https://doi.org/10.1103/physreve.92.032129, ISSN 1539-3755
  40. 40.
    F. Barra, C. Lledó, Stochastic thermodynamics of quantum maps with and without equilibrium. Phys. Rev. E 96(5) (2017).  https://doi.org/10.1103/physreve.96.052114, ISSN 2470-0045
  41. 41.
    J.M. Horowitz, Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator. Phys. Rev. E 85, 031110+ (2012).  https://doi.org/10.1103/physreve.85.031110
  42. 42.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Quantum fluctuation theorems for arbitrary environments: adiabatic and non-adiabatic entropy production. Phys. Rev. X 8, 031037 (2018).  https://doi.org/10.1103/PhysRevX.8.031037
  43. 43.
    D. Petz, Quantum Information Theory and Quantum Statistics (Springer, Berlin, 2008).  https://doi.org/10.1007/978-3-540-74636-2
  44. 44.
    P.M. Alberti, A. Uhlmann, Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing (Springer, Berlin, 1982)zbMATHGoogle Scholar
  45. 45.
    M. Nakahara, R. Rahimi, A. Saitoh, Decoherence Suppression in Quantum Systems (World Scientific, Singapore, 2008).  https://doi.org/10.1142/7653
  46. 46.
    Y. Murashita, Absolute irreversibility in information thermodynamics. Master’s thesis (2015). arXiv:1506.04470
  47. 47.
    K. Funo, Y. Murashita, M. Ueda, Quantum nonequilibrium equalities with absolute irreversibility. New J. Phys. 17(7), 075005+ (2015).  https://doi.org/10.1088/1367-2630/17/7/075005, ISSN 1367-2630
  48. 48.
    Jarzynski relations for quantum systems and some applications (2000). arXiv:cond-mat/0009244.pdf
  49. 49.
    J. Kurchan, A quantum fluctuation theorem (2001). arXiv:cond-mat/0007360
  50. 50.
    S. Mukamel, Quantum extension of the jarzynski relation: analogy with stochastic dephasing. Phys. Rev. Lett. 90(17) (2003).  https://doi.org/10.1103/physrevlett.90.170604
  51. 51.
    P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: work is not an observable. Phys. Rev. E 75(5), 050102+ (2007).  https://doi.org/10.1103/physreve.75.050102, ISSN 1539-3755
  52. 52.
    M. Campisi, P. Hänggi, P. Talkner, Colloquium : Quantum fluctuation relations: foundations and applications. tRev. Mod. Phys. 83(3), 771–791 (2011).  https://doi.org/10.1103/revmodphys.83.771, ISSN 0034-6861
  53. 53.
    M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665–1702 (2009).  https://doi.org/10.1103/revmodphys.81.1665
  54. 54.
    C. Elouard, D. Hererra-Martí, M. Esposito, A. Auffèves, Thermodynamics of Resonance Fluorescence, in preparation (2018)Google Scholar
  55. 55.
    C. Elouard, Thermodynamics of quantum open systems: applications in quantum optics and optomechanics (2017), arXiv:1709.02744
  56. 56.
    C. Elouard, D. Herrera-Martí, B. Huard, A. Auffèves, Extracting work from quantum measurement in Maxwell’s Demon engines. Phys. Rev. Lett.118(26), 260603 (2017).  https://doi.org/10.1103/PhysRevLett.118.260603, ISSN 0031-9007
  57. 57.
    J. Yi, P. Talkner, Y.W. Kim, Single-temperature quantum engine without feedback control. Phys. Rev. E96(2) (2017).  https://doi.org/10.1103/physreve.96.022108, ISSN 2470-0045
  58. 58.
    C. Elouard, A.N. Jordan, Efficient quantum measurement engine. Phys. Rev. Lett. 120, 260601 (2018).  https://doi.org/10.1103/PhysRevLett.120.260601
  59. 59.
    M.H. Mohammady, J. Anders, New J. Phys. 19, 113026 (2017).  https://doi.org/10.1088/1367-2630/aa8ba1
  60. 60.
    C. Elouard, N.K. Bernardes, A.R.R. Carvalho, M.F. Santos, A. Auffèves, Probing quantum fluctuation theorems in engineered reservoirs. New J. Phys. 19(10), 103011 (2017).  https://doi.org/10.1088/1367-2630/aa7fa2, ISSN 1367-2630
  61. 61.
    S. Gherardini et al., Non-equilibrium quantum-heat statistics under stochastic projective measurements. Phys. Rev. E 98(3), 032108 (2018).  https://doi.org/10.1103/PhysRevE.98.032108
  62. 62.
    M.H. Mohammady, A. Auffeves, J. Anders, The two energetic facets of entropy production in the quantum regime, in preparationGoogle Scholar
  63. 63.
    G. Francica, J. Goold, F. Plastina, (2017). arXiv: 1707.06950
  64. 64.
    J.P. Santos, L.C. Céleri, G.T. Landi, M. Paternostro, (2017). arXiv:1707.08946
  65. 65.
    J.P. Pekola, P. Solinas, A. Shnirman, D.V. Averin, Calorimetric measurement of work in a quantum system. New J. Phys. 15(11), 115006+ (2013).  https://doi.org/10.1088/1367-2630/15/11/115006, ISSN 1367-2630
  66. 66.
    K. Szczygielski, D.G. Klimovsky, R. Alicki, Markovian master equation and thermodynamics of a two-level system in a strong laser field. Phys. Rev. E 87, 012120+ (2013).  https://doi.org/10.1103/physreve.87.012120
  67. 67.
    G.B. Cuetara, A. Engel, M. Esposito, Stochastic thermodynamics of rapidly driven systems. New J. Phys. 17(5), 055002+ (2015).  https://doi.org/10.1088/1367-2630/17/5/055002, ISSN 1367-2630
  68. 68.
    B. Donvil, Thermodynamics of a periodically driven qubit. J. Stat. Mech.: Theory Exp. (4), 043104+ (2018). http://doi.org/10.1088/1742-5468/aab857, ISSN 1742–5468
  69. 69.
    M. Naghiloo, D. Tan, P.M. Harrington, J.J. Alonso, E. Lutz, A. Romito, K.W. Murch, Thermodynamics along individual trajectories of a quantum bit (2017) arXiv:1703.05885
  70. 70.
    M. Campisi, P. Talkner, P. Hänggi, Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102(21), 210401+ (2009).  https://doi.org/10.1103/physrevlett.102.210401, ISSN 0031-9007
  71. 71.
    N. Didier, J. Bourassa, A. Blais, Fast quantum nondemolition readout by parametric modulation of longitudinal qubit-oscillator interaction. Phys. Rev. Lett.115(20), 203601+ (2015).  https://doi.org/10.1103/physrevlett.115.203601, ISSN 0031-9007
  72. 72.
    M. Naghiloo, J.J. Alonso, A. Romito, E. Lutz, K.W. Murch, Information gain and loss for a quantum Maxwell’s demon (2018).  https://doi.org/10.1103/PhysRevLett.121.030604
  73. 73.
    A.N. Jordan, A. Chantasri, P. Rouchon, B. Huard, Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission. 3(3), 237–263 (2016).  https://doi.org/10.1007/s40509-016-0075-9
  74. 74.
    C.W. Wächtler, P. Strasberg, T. Brandes, Stochastic thermodynamics based on incomplete information: generalized jarzynski equality with measurement errors with or without feedback. New J. Phys. 18(11), 113042+ (2016).  https://doi.org/10.1088/1367-2630/18/11/113042, ISSN 1367-2630
  75. 75.
    L. Diósi, W.T. Strunz, The non-markovian stochastic schrödinger equation for open systems. Phys. Lett. A 235(6), 569–573 (1997).  https://doi.org/10.1016/s0375-9601(97)00717-2, ISSN 03759601
  76. 76.
    W.T. Strunz, L. Diósi, N. Gisin, Open system dynamics with non-markovian quantum trajectories. Phys. Rev. Lett. 82(9), 1801–1805 (1999)  https://doi.org/10.1103/physrevlett.82.1801, ISSN 0031-9007
  77. 77.
    M.W. Jack, M.J. Collett, Continuous measurement and non-markovian quantum trajectories. Phys. Rev. A 61(6) (2000).  https://doi.org/10.1103/physreva.61.062106, ISSN 1050-2947
  78. 78.
    J. Jing, X. Zhao, J.Q. You, W.T. Strunz, T. Yu, Many-body quantum trajectories of non-markovian open systems. Phys. Rev. A 88(5) (2013).  https://doi.org/10.1103/physreva.88.052122, ISSN 1050-2947

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of RochesterRochesterUSA
  2. 2.Lancaster UniversityLancasterUnited Kingdom

Personalised recommendations