Advertisement

Introduction to Quantum Thermodynamics: History and Prospects

  • Robert Alicki
  • Ronnie KosloffEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Quantum Thermodynamics is a continuous dialogue between two independent theories: Thermodynamics and Quantum Mechanics. Whenever the two theories have addressed the same phenomena new insight has emerged. We follow the dialogue from equilibrium Quantum Thermodynamics and the notion of entropy and entropy inequalities which are the base of the II-law. Dynamical considerations lead to non-equilibrium thermodynamics of quantum Open Systems. The central part played by completely positive maps is discussed leading to the Gorini–Kossakowski–Lindblad–Sudarshan “GKLS” equation. We address the connection to thermodynamics through the system-bath weak-coupling-limit WCL leading to dynamical versions of the I-law. The dialogue has developed through the analysis of quantum engines and refrigerators. Reciprocating and continuous engines are discussed. The autonomous quantum absorption refrigerator is employed to illustrate the III-law. Finally, we describe some open questions and perspectives.

Notes

Acknowledgements

We want to thank Amikam Levi and Raam Uzdin for their helpful comments. The work was partially supported by the Israeli Science Foundation: Grant 2244/14.

References

  1. 1.
    M.K.E.L. Planck, Zur theorie des gesetzes der energieverteilung im normalspectrum. Verhandl. Dtsc. Phys. Ges. 2, 237 (1900)Google Scholar
  2. 2.
    A. Einstein, Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der physik 322(6), 132–148 (1905).  https://doi.org/10.1002/andp.19053220607
  3. 3.
    J. Von Neumann, Mathematical Foundations of Quantum Mechanics, vol. 2 (Princeton university press, Princeton, 1955).  https://doi.org/10.1090/s0002-9904-1958-10206-2
  4. 4.
    A. Einstein, Strahlungs-emission und absorption nach der quantentheorie. Deutsche Physikalische Gesellschaft, 18 (1916)Google Scholar
  5. 5.
    H.E.D. Scovil, E.O. Schulz-DuBois, Three-level masers as heat engines. Phys. Rev. Lett. 2(6), 262 (1959).  https://doi.org/10.1103/PhysRevLett.2.262
  6. 6.
    J.E. Geusic, B.O. Schulz-DuBois, R.W. De Grasse, H.E.D. Scovil, Three level spin refrigeration and maser action at 1500 mc/sec. J. Appl. Phys. 30(7), 1113–1114 (1959).  https://doi.org/10.1063/1.1776991
  7. 7.
    J.E. Geusic, E.O. Schulz-DuBios, H.E.D. Scovil, Quantum equivalent of the carnot cycle. Phys. Rev. 156(2), 343 (1967).  https://doi.org/10.1103/PhysRev.156.343
  8. 8.
    D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40(25), 1639 (1978).  https://doi.org/10.1103/PhysRevLett.40.1639
  9. 9.
    T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Optics Commun. 13(1), 68–69 (1975).  https://doi.org/10.1016/0030-4018(75)90159-5
  10. 10.
    W. Heisenberg, The Physical Principles of the Quantum Theory (Courier Corporation, North Chelmsford, 1949)zbMATHGoogle Scholar
  11. 11.
    E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049 (1926).  https://doi.org/10.1103/PhysRev.28.1049
  12. 12.
    P.A.M. Dirac, The Principles of Quantum Mechanics, vol. 27 (Oxford university press, Oxford, 1981)Google Scholar
  13. 13.
    M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452(7189), 854–858 (2008).  https://doi.org/10.1038/nature06838
  14. 14.
    H.B. Callen, Thermodynamics and An Introduction to Thermostatistics (University of Pennsylvania, Philadelphia, 1998)zbMATHGoogle Scholar
  15. 15.
    R. Haag, D. Kastler, E.B. Trych-Pohlmeyer, Stability and equilibrium states. Commun. Math. Phys. 38(3), 173–193 (1974).  https://doi.org/10.1007/BF01651541
  16. 16.
    A. Lenard, Thermodynamical proof of the gibbs formula for elementary quantum systems. J. Stat. Phys. 19(6), 575–586 (1978).  https://doi.org/10.1007/BF01011769
  17. 17.
    W. Pusz, S.L. Woronowicz, Passive states and kms states for general quantum systems. Commun. Math. Phys. 58(3), 273–290 (1978).  https://doi.org/10.1007/BF01614224
  18. 18.
    R. Kubo, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957).  https://doi.org/10.1143/JPSJ.12.570
  19. 19.
    M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. ii. irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954).  https://doi.org/10.1063/1.1740082
  20. 20.
    P.C. Martin, J. Schwinger, Theory of many-particle systems. i. Phys. Rev. 115(6), 1342 (1959).  https://doi.org/10.1103/PhysRev.115.1342
  21. 21.
    O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics. vol. 2: Equilibrium states. models in quantum statistical mechanics (1996)Google Scholar
  22. 22.
    K. Kraus, General state changes in quantum theory. Ann. Phys. 64(2), 311–335 (1971).  https://doi.org/10.1016/0003-4916(71)90108-4
  23. 23.
    W.F. Stinespring, Mr0069403 (16, 1033b) 46.0 x. Proc. Am. Math. Soc. 6, 211–216 (1955)Google Scholar
  24. 24.
    G. Lindblad, Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147 (1975).  https://doi.org/10.1007/BF01609396
  25. 25.
    D. Chruściński, S. Pascazio, A brief history of the gkls equation. Open Syst. Inf. Dyn. 24(03), 1740001 (2017).  https://doi.org/10.1142/S1230161217400017
  26. 26.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17(5), 821–825 (1976).  https://doi.org/10.1063/1.522979
  27. 27.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976).  https://doi.org/10.1007/BF01608499
  28. 28.
    I. Siemon, A.S. Holevo, R.F. Werner, Unbounded generators of dynamical semigroups. Open Syst. Inf. Dyn. 24(04), 1740015 (2017).  https://doi.org/10.1142/S1230161217400157
  29. 29.
    E.B. Davies. Markovian master equations. Commun. Math. Phys. 39(2), 91–110 (1974).  https://doi.org/10.1007/BF01608389
  30. 30.
    R.K. Wangsness, F. Bloch, The dynamical theory of nuclear induction. Phys. Rev. 89(4), 728 (1953).  https://doi.org/10.1103/PhysRev.89.728
  31. 31.
    A.G. Redfield, On the theory of relaxation processes. IBM J. Res. Dev. 1(1), 19–31 (1957).  https://doi.org/10.1147/rd.11.0019
  32. 32.
    S. Nakajima, On quantum theory of transport phenomena: steady diffusion. Prog. Theor. Phys. 20(6), 948–959 (1958).  https://doi.org/10.1143/PTP.20.948
  33. 33.
    R. Zwanzig, Ensemble method in the theory of irreversibility. J. Chem. Phys. 33(5), 1338–1341 (1960).  https://doi.org/10.1063/1.1731409
  34. 34.
    E. Fermi, Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago (University of Chicago Press, Chicago, 1950)Google Scholar
  35. 35.
    R. Alicki, The markov master equations and the fermi golden rule. Int. J. Theor. Phys. 16(5), 351–355 (1977).  https://doi.org/10.1007/BF01807150
  36. 36.
    A. Frigerio, Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys. 2(2), 79–87 (1977).  https://doi.org/10.1007/BF00398571
  37. 37.
    E.B. Davies, H. Spohn, Open quantum systems with time-dependent hamiltonians and their linear response. J. Stat. Phys. 19(5), 511–523 (1978).  https://doi.org/10.1007/BF01011696
  38. 38.
    R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A: Math. General 12(5), L103 (1979).  https://doi.org/10.1088/0305-4470/12/5/007
  39. 39.
    H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19(5), 1227–1230 (1978).  https://doi.org/10.1063/1.523789
  40. 40.
    R.T. McAdory Jr., W.C. Schieve, On entropy production in a stochastic model of open systems. J. Chem. Phys. 67(5), 1899–1903 (1977).  https://doi.org/10.1063/1.435120
  41. 41.
    H. Spohn, J.L. Lebowitz, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys 38, 109–142 (1978).  https://doi.org/10.1002/9780470142578.ch2
  42. 42.
    E. Geva, R. Kosloff, J.L. Skinner, On the relaxation of a two-level system driven by a strong electromagnetic field. J. Chem. Phys. 102(21), 8541–8561 (1995).  https://doi.org/10.1063/1.468844
  43. 43.
    S. Kohler, T. Dittrich, P. Hänggi, Floquet-markovian description of the parametrically driven, dissipative harmonic quantum oscillator. Phys. Rev. E 55(1), 300 (1997).  https://doi.org/10.1103/PhysRevE.55.300
  44. 44.
    A. Levy, R. Alicki, R. Kosloff, Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 85, 061126 (2012).  https://doi.org/10.1103/PhysRevE.85.061126
  45. 45.
    K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki, Markovian master equation and thermodynamics of a two-level system in a strong laser field. Phys. Rev. E 87(1), 012120 (2013).  https://doi.org/10.1103/PhysRevE.87.012120
  46. 46.
    R. Alicki, D. Gelbwaser-Klimovsky, Non-equilibrium quantum heat machines. New J. Phys. 17(11), 115012 (2015).  https://doi.org/10.1088/1367-2630/17/11/115012
  47. 47.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602
  48. 48.
    W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Universal thermodynamic limit of quantum engine efficiency, Nat. Commun. 9, 165 (2018).  https://doi.org/10.1038/s41467-017-01991-6
  49. 49.
    R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15(6), 2100–2128 (2013).  https://doi.org/10.3390/e15062100
  50. 50.
    P. Pechukas, Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73(8), 1060 (1994).  https://doi.org/10.1103/PhysRevLett.73.1060
  51. 51.
    R. Alicki, Comment on reduced dynamics need not be completely positive. Phys. Rev. Lett. 75(16), 3020 (1995).  https://doi.org/10.1103/PhysRevLett.75.3020
  52. 52.
    G. Lindblad, On the existence of quantum subdynamics. J. Phys. A: Math. General 29(14), 4197 (1996).  https://doi.org/10.1088/0305-4470/29/14/037
  53. 53.
    G. Argentieri, F. Benatti, R. Floreanini, M. Pezzutto, Violations of the second law of thermodynamics by a non-completely positive dynamics. EPL (Europhys. Lett.) 107(5), 50007 (2014).  https://doi.org/10.1209/0295-5075/107/50007
  54. 54.
    G. Argentieri, F. Benatti, R. Floreanini, M. Pezzutto, Complete positivity and thermodynamics in a driven open quantum system. J. Stat. Phys. 159(5), 1127–1153 (2015).  https://doi.org/10.1007/s10955-015-1210-4
  55. 55.
    A.O. Caldeira, A.J. Leggett, Path integral approach to quantum brownian motion. Phys. A: Stat. Mech. Appl. 121(3), 587–616 (1983).  https://doi.org/10.1016/0378-4371(83)90013-4
  56. 56.
    L. Diósi, Calderia-leggett master equation and medium temperatures. Phys. A: Stat. Mech. Appl. 199(3–4), 517–526 (1993).  https://doi.org/10.1016/0378-4371(93)90065-C
  57. 57.
    D. Kohen, C. Clay Marston, D.J. Tannor, Phase space approach to theories of quantum dissipation. J. Chem. Phys. 107(13), 5236–5253 (1997).  https://doi.org/10.1063/1.474887
  58. 58.
    G. Lindblad, Brownian motion of a quantum harmonic oscillator. Rep. Math. Phys. 10(3), 393–406 (1976).  https://doi.org/10.1016/0034-4877(76)90029-X
  59. 59.
    A. Levy, R. Kosloff, The local approach to quantum transport may violate the second law of thermodynamics. EPL (Europhys. Lett.) 107(2), 20004 (2014).  https://doi.org/10.1209/0295-5075/107/20004
  60. 60.
    P.P. Hofer, M. Perarnau-Llobet, L.D.M. Miranda, G. Haack, R. Silva, J.B. Brask, N. Brunner, Markovian master equations for quantum thermal machines: local vs global approach. New J. Phys. 19, 123037 (2017).  https://doi.org/10.1088/1367-2630/aa964f
  61. 61.
    M.T. Mitchison, M.B. Plenio, Non-additive dissipation in open quantum networks out of equilibrium. New J. Phys. 20, 033005 (2018).  https://doi.org/10.1088/1367-2630/aa9f70
  62. 62.
    J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Testing the validity of the localand globalgkls master equations on an exactly solvable model. Open Syst. Inf. Dyn. 24(04), 1740010 (2017).  https://doi.org/10.1142/S1230161217400108
  63. 63.
    J.B. Brask, J. Kołodyński, M. Perarnau-Llobet, B. Bylicka, Additivity of dynamical generators for quantum master equations. Phys. Rev. A 97, 062124 (2018).  https://doi.org/10.1103/PhysRevA.97.062124
  64. 64.
    E. Geva, R. Kosloff, The quantum heat engine and heat pump: an irreversible thermodynamic analysis of the three-level amplifier. J. Chem. Phys. 104(19), 7681–7699 (1996).  https://doi.org/10.1063/1.471453
  65. 65.
    F. Haake, Statistical treatment of open systems by generalized master equations, in Springer Tracts in Modern Physics (Springer, Berlin, 1973), pp. 98–168.  https://doi.org/10.1007/978-3-662-40468-3_2
  66. 66.
    U. Kleinekathöfer, Non-markovian theories based on a decomposition of the spectral density. J. Chem. Phys. 121(6), 2505–2514 (2004).  https://doi.org/10.1063/1.1770619
  67. 67.
    I. de Vega, D. Alonso, Dynamics of non-markovian open quantum systems. Rev. Mod. Phys. 89(1), 015001 (2017).  https://doi.org/10.1103/RevModPhys.89.15001
  68. 68.
    F. Shibata, Y. Takahashi, N. Hashitsume, A generalized stochastic liouville equation. non-markovian versus memoryless master equations. J. Stat. Phys. 17(4), 171–187 (1977).  https://doi.org/10.1007/BF01040100
  69. 69.
    A.G. Kofman, G. Kurizki, Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93(13), 130406 (2004).  https://doi.org/10.1103/PhysRevLett.93.130406
  70. 70.
    Y. Tanimura, R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. J. Phys. Soc. Jpn. 58(1), 101–114 (1989).  https://doi.org/10.1143/JPSJ.58.101
  71. 71.
    C. Meier, D.J. Tannor, Non-markovian evolution of the density operator in the presence of strong laser fields. J. Chem. Phys. 111(8), 3365–3376 (1999).  https://doi.org/10.1063/1.479669
  72. 72.
    J. Jin, X. Zheng, Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. J. Chem. Phys. 128(23), 234703 (2008).  https://doi.org/10.1063/1.2938087
  73. 73.
    A. Ishizaki, G.R. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 130(23), 234111 (2009).  https://doi.org/10.1063/1.3155372
  74. 74.
    S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini, A.T. Rezakhani, Entropy production and non-markovian dynamical maps. Sci. Rep. 7(1), 12447 (2017).  https://doi.org/10.1038/s41598-017-12595-x
  75. 75.
    S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A.T. Rezakhani, Correlations in quantum thermodynamics: heat, work, and entropy production. Sci. Rep. 6 (2016).  https://doi.org/10.1038/srep35568
  76. 76.
    M. Esposito, M.A. Ochoa, M. Galperin, Quantum thermodynamics: a nonequilibrium green’s function approach. Phys. Rev. Lett. 114(8), 080602 (2015).  https://doi.org/10.1103/PhysRevLett.114.080602
  77. 77.
    M.F. Ludovico, M. Moskalets, D. Sánchez, L. Arrachea, Dynamics of energy transport and entropy production in ac-driven quantum electron systems. Phys. Rev. B 94(3), 035436 (2016).  https://doi.org/10.1103/PhysRevB.94.035436
  78. 78.
    M.A. Ochoa, A. Bruch, A. Nitzan, Energy distribution and local fluctuations in strongly coupled open quantum systems: the extended resonant level model. Phys. Rev. B 94(3), 035420 (2016).  https://doi.org/10.1103/PhysRevB.94.035420
  79. 79.
    G. Schaller, T. Krause, T. Brandes, M. Esposito, Single-electron transistor strongly coupled to vibrations: counting statistics and fluctuation theorem. New J. Phys. 15(3), 033032 (2013).  https://doi.org/10.1088/1367-2630/15/3/033032
  80. 80.
    D. Segal, Two-level system in spin baths: Non-adiabatic dynamics and heat transport. J. Chem. Phys. 140(16), 164110 (2014).  https://doi.org/10.1063/1.4871874
  81. 81.
    X. Dazhi, C. Wang, Y. Zhao, J. Cao, Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective. New J. Phys. 18(2), 023003 (2016).  https://doi.org/10.1088/1367-2630/18/2/023003
  82. 82.
    C. Wang, J. Ren, J. Cao, Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics. Phys. Rev. A 95(2), 023610 (2017).  https://doi.org/10.1103/PhysRevA.95.023610
  83. 83.
    D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, Strongly coupled quantum heat machines. J. Phys. Chem. Lett, 6(17), 3477–3482 (2015).  https://doi.org/10.1021/acs.jpclett.5b01404
  84. 84.
    A. Bruch, M. Thomas, S.V. Kusminskiy, F. von Oppen, A. Nitzan, Quantum thermodynamics of the driven resonant level model. Phys. Rev. B 93(11), 115318 (2016).  https://doi.org/10.1103/PhysRevB.93.115318
  85. 85.
    P. Strasberg, G. Schaller, N. Lambert, T. Brandes, Nonequilibrium thermodynamics in the strong coupling and non-markovian regime based on a reaction coordinate mapping. New J. Phys. 18(7), 073007 (2016).  https://doi.org/10.1088/1367-2630/18/7/073007
  86. 86.
    D. Newman, F. Mintert, A. Nazir, Performance of a quantum heat engine at strong reservoir coupling. Phys. Rev. E 95(3), 032139 (2017).  https://doi.org/10.1103/PhysRevE.95.032139
  87. 87.
    M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, J. Eisert, Strong coupling corrections in quantum thermodynamics. Phys. Rev. Lett 120(12), 120602 (2018).  https://doi.org/10.1103/PhysRevLett.120.120602
  88. 88.
    G. Katz, R. Kosloff, Quantum thermodynamics in strong coupling: heat transport and refrigeration. Entropy 18(5), 186 (2016).  https://doi.org/10.3390/e18050186
  89. 89.
    R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence and work extraction beyond markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016).  https://doi.org/10.3390/e18040124
  90. 90.
    S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Annales scientifiques de l’Ecole normale (1872).  https://doi.org/10.24033/asens.88
  91. 91.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352(6283), 325–329 (2016).  https://doi.org/10.1126/science.aad6320
  92. 92.
    T. Feldmann, R. Kosloff, Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70(4), 046110 (2004).  https://doi.org/10.1103/PhysRevE.70.046110
  93. 93.
    Y. Rezek, R. Kosloff, Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8(5), 83 (2006).  https://doi.org/10.1088/1367-2630/8/5/083
  94. 94.
    E. Geva, R. Kosloff, A quantum-mechanical heat engine operating in finite time. a model consisting of spin-1/2 systems as the working fluid. The J. Chem. Phys. 96(4), 3054–3067 (1992).  https://doi.org/10.1063/1.461951
  95. 95.
    T. Feldmann, R. Kosloff, Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68(1), 016101 (2003).  https://doi.org/10.1103/PhysRevE.68.016101
  96. 96.
    M. Esposito, Stochastic thermodynamics under coarse graining. Phys. Rev. E 85(4), 041125 (2012).  https://doi.org/10.1103/PhysRevE.85.041125
  97. 97.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  98. 98.
    F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, R. Zambrini, Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113(26), 260601 (2014).  https://doi.org/10.1103/PhysRevLett.113.260601
  99. 99.
    A. Xi Chen, S. Ruschhaupt, A. Del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104(6), 063002 (2010).  https://doi.org/10.1103/PhysRevLett.104.063002
  100. 100.
    E. Torrontegui, S. Ibánez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, J.G. Muga, Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).  https://doi.org/10.1016/B978-0-12-408090-4.00002-5
  101. 101.
    A. Del Campo, J. Goold, M. Paternostro, More bang for your buck: Super-adiabatic quantum engines. Sci. Rep. 4 (2014).  https://doi.org/10.1038/srep06208
  102. 102.
    J. Anandan, Y. Aharonov, Geometry of quantum evolution. Phys. Rev. Lett. 65(14), 1697 (1990).  https://doi.org/10.1103/PhysRevLett.65.1697
  103. 103.
    S. Deffner, E. Lutz, Energy-time uncertainty relation for driven quantum systems. J. Phys. A: Math. Theor. 46(33), 335302 (2013).  https://doi.org/10.1088/1751-8113/46/33/335302
  104. 104.
    D. Stefanatos, Minimum-time transitions between thermal and fixed average energy states of the quantum parametric oscillator. SIAM J. Control Optim. 55(3), 1429–1451 (2017).  https://doi.org/10.1137/16M1088697
  105. 105.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Extracting work from a single heat bath via vanishing quantum coherence. Science 299(5608), 862–864 (2003).  https://doi.org/10.1126/science.1078955
  106. 106.
    W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, On the operation of machines powered by quantum non-thermal baths. New J. Phys. 18(8), 083012 (2016).  https://doi.org/10.1088/1367-2630/18/8/083012
  107. 107.
    I.I. Novikov, The efficiency of atomic power stations (a review). J. Nucl. Energy 7(1), 125–128 (1954).  https://doi.org/10.1016/0891-3919(58)90244-4
  108. 108.
    F.L. Curzon, B. Ahlborn, Efficiency of a carnot engine at maximum power output. Am. J. Phys. 43(1), 22–24 (1975).  https://doi.org/10.1119/1.10023
  109. 109.
    R. Uzdin, R. Kosloff, Universal features in the efficiency at maximal work of hot quantum otto engines. EPL (Europhys. Lett.) 108(4), 40001 (2014).  https://doi.org/10.1209/0295-5075/108/40001
  110. 110.
    V. Cavina, A. Mari, V. Giovannetti, Slow dynamics and thermodynamics of open quantum systems. Phys. Rev. Lett. 119(5), 050601 (2017).  https://doi.org/10.1103/PhysRevLett.119.050601
  111. 111.
    B. Andresen, R.S. Berry, A. Nitzan, P. Salamon, Thermodynamics in finite time. i. the step-carnot cycle. Phys. Rev. A 15(5), 2086 (1977).  https://doi.org/10.1103/PhysRevA.15.2086
  112. 112.
    P. Salamon, J.D. Nulton, G. Siragusa, T.R. Andersen, A. Limon, Principles of control thermodynamics. Energy 26(3), 307–319 (2001).  https://doi.org/10.1016/S0360-5442(00)00059-1
  113. 113.
    E. Geva, R. Kosloff, On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 97(6), 4398–4412 (1992).  https://doi.org/10.1063/1.463909
  114. 114.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Efficiency at maximum power of low-dissipation carnot engines. Phys. Rev. Lett. 105(15), 150603 (2010).  https://doi.org/10.1103/PhysRevLett.105.150603
  115. 115.
    H.T. Quan, Y.-x. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007).  https://doi.org/10.1103/PhysRevE.76.031105
  116. 116.
    A.E. Allahverdyan, R.S. Johal, G. Mahler, Work extremum principle: Structure and function of quantum heat engines. Phys. Rev. E 77(4), 041118 (2008).  https://doi.org/10.1103/PhysRevE.77.041118
  117. 117.
    R. Uzdin, A. Levy, R. Kosloff, Quantum equivalence and quantum signatures in heat engines. Phys. Rev. X 5, 031044 (2015).  https://doi.org/10.1103/PhysRevX.5.031044
  118. 118.
    P.R. Chernoff, Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators, vol. 140 (American Mathematical Soc., 1974)Google Scholar
  119. 119.
    T. Feldmann, R. Kosloff, Performance of discrete heat engines and heat pumps in finite time. Phys. Rev. E 61(5), 4774 (2000).  https://doi.org/10.1103/PhysRevE.61.4774
  120. 120.
    Y. Rezek, P. Salamon, K.H. Homann, R. Kosloff, The quantum refrigerator: the quest for absolute zero. EPL (Europhys. Lett.) 85(3), 30008 (2009).  https://doi.org/10.1209/0295-5075/85/30008
  121. 121.
    R. Kosloff, A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 80(4), 1625–1631 (1984).  https://doi.org/10.1063/1.446862
  122. 122.
    J.P. Palao, R. Kosloff, J.M. Gordon, Quantum thermodynamic cooling cycle. Phys. Rev. E 64(5), 056130 (2001).  https://doi.org/10.1103/PhysRevE.64.056130
  123. 123.
    F. Tonner, G. Mahler, Autonomous quantum thermodynamic machines. Phys. Rev. E 72(6), 066118 (2005).  https://doi.org/10.1103/PhysRevE.72.066118
  124. 124.
    N. Linden, S. Popescu, P. Skrzypczyk, How small can thermal machines be? the smallest possible refrigerator. Phys. Rev. Lett, 105(13), 130401 (2010).  https://doi.org/10.1103/PhysRevLett.105.130401
  125. 125.
    A. Levy, L. Diósi, R. Kosloff, Quantum flywheel. Phys. Rev. A 93, 052119 (2016).  https://doi.org/10.1103/PhysRevA.93.052119
  126. 126.
    A. Levy, R. Kosloff, Quantum absorption refrigerator. Physical Reveiew Letters 108, 070604 (2012).  https://doi.org/10.1103/PhysRevLett.108.070604
  127. 127.
    O.-P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Heat transistor: demonstration of gate-controlled electronic refrigeration. Phys. Rev. Lett. 99(2), 027203 (2007).  https://doi.org/10.1103/PhysRevLett.99.027203
  128. 128.
    P. Skrzypczyk, N. Brunner, N. Linden, S. Popescu, The smallest refrigerators can reach maximal efficiency. J. Phys. A: Math. Theor. 44(49), 492002 (2011).  https://doi.org/10.1088/1751-8113/44/49/492002
  129. 129.
    L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Performance bound for quantum absorption refrigerators. Phys. Rev. E 87(4), 042131 (2013).  https://doi.org/10.1103/PhysRevE.87.042131
  130. 130.
    R. Kosloff, A. Levy, Quantum heat engines and refrigerators: continuous devices. Ann. Rev. Phys. Chem. 65, 365–393 (2014).  https://doi.org/10.1146/annurev-physchem-040513-103724
  131. 131.
    G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, Quantum absorption refrigerator with trapped ions (2017).  https://doi.org/10.1109/CLEOE-EQEC.2017.8087335
  132. 132.
    E.A. Martinez, J.P. Paz, Dynamics and thermodynamics of linear quantum open systems. Phys. Rev. Lett. 110(13), 130406 (2013).  https://doi.org/10.1103/PhysRevLett.110.130406
  133. 133.
    R. Clausius, Über die bewegende kraft der wärme und die gesetze, welche sich daraus für die wärmelehre selbst ableiten lassen. Annalen der Physik 155(3), 368–397 (1850).  https://doi.org/10.1002/andp.18501550306
  134. 134.
    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Quantum-enhanced absorption refrigerators. Sci. Rep. 4, srep03949 (2014).  https://doi.org/10.1038/srep03949
  135. 135.
    A. Mu, B.K. Agarwalla, G. Schaller, D. Segal, Qubit absorption refrigerator at strong coupling. New J. Phys. 19(12), 123034 (2017).  https://doi.org/10.1088/1367-2630/aa9b75
  136. 136.
    W. Nernst, Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachr. Kgl. Ges. Wiss. Go\(\ddot{\rm t}\)t. 1, 40 (1906)Google Scholar
  137. 137.
    P.T. Landsberg, A comment on nernst’s theorem. J. Phys A: Math. Gen. 22, 139 (1989).  https://doi.org/10.1088/0305-4470/22/1/021
  138. 138.
    A. Levy, R. Alicki, R. Kosloff, Comment on cooling by heating: refrigeration powered by photons. Phys. Rev. Lett. 109, 248901 (2012).  https://doi.org/10.1103/PhysRevLett.109.248901
  139. 139.
    W. Nernst, The theoretical and experimental bases of the New Heat Theorem Ger., Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes. W. Knapp, Halle, 1918Google Scholar
  140. 140.
    L. Masanes, J. Oppenheim, A general derivation and quantification of the third law of thermodynamics. Nat. Commun. 8 (2017).  https://doi.org/10.1038/ncomms14538
  141. 141.
    N. Freitas, J.P. Paz, Fundamental limits for cooling of linear quantum refrigerators. Phys. Rev. E 95(1), 012146 (2017).  https://doi.org/10.1103/PhysRevE.95.012146
  142. 142.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Minimal universal quantum heat machine. Phys. Rev. E 87(1), 012140 (2013).  https://doi.org/10.1103/PhysRevE.87.012140
  143. 143.
    Y. Zhou, D. Segal, Minimal model of a heat engine: information theory approach. Phys. Rev. E 82(1), 011120 (2010).  https://doi.org/10.1103/PhysRevE.82.011120
  144. 144.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Work and energy gain of heat-pumped quantized amplifiers. EPL (Europhys. Lett.) 103(6), 60005 (2013).  https://doi.org/10.1209/0295-5075/103/60005
  145. 145.
    E. Boukobza, D.J. Tannor, Three-level systems as amplifiers and attenuators: a thermodynamic analysis. Phys. Rev. Lett. 98(24), 240601 (2007).  https://doi.org/10.1103/PhysRevLett.98.240601
  146. 146.
    S.-W. Li, M.B. Kim, G.S. Agarwal, M.O. Scully, Quantum statistics of a single-atom Scovil–Schulz-DuBois heat engine. Phys. Rev. A 96(6), 063806 (2017).  https://doi.org/10.1103/PhysRevA.96.063806
  147. 147.
    G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1 (2017).  https://doi.org/10.1016/j.physrep.2017.05.008
  148. 148.
    R. Alicki, D. Gelbwaser-Klimovsky, A. Jenkins, A thermodynamic cycle for the solar cell. Ann. Phys. 378, 71–87 (2017).  https://doi.org/10.1016/j.aop.2017.01.003
  149. 149.
    R. Alicki, D. Gelbwaser-Klimovsky, K. Szczygielski, Solar cell as a self-oscillating heat engine. J. Phys. A: Math. Theor. 49(1), 015002 (2015).  https://doi.org/10.1088/1751-8113/49/1/015002
  150. 150.
    R. Alicki, Thermoelectric generators as self-oscillating heat engines. J. Phys. A: Math. Theor. 49(8), 085001 (2016).  https://doi.org/10.1088/1751-8113/49/8/085001
  151. 151.
    H. Lee, J. Wu, J. Barbe, S.M. Jain, S. Wood, E. Speller, Z. Li, F.A. de Castro, J. Durrant, W. Tsoi, Organic photovoltaic cell–a promising indoor light harvester for self-sustainable electronics. J. Mater. Chem. A (2017).  https://doi.org/10.1039/C7TA10875C
  152. 152.
    A.A. Bakulin, R. Lovrincic, X. Yu, O. Selig, H.J. Bakker, Yves L.A. Rezus, P.K. Nayak, A. Fonari, V. Coropceanu, J.-L. Brédas et al., Mode-selective vibrational modulation of charge transport in organic electronic devices. Nat. Commun. 6 (2015).  https://doi.org/10.1038/ncomms8880
  153. 153.
    A.W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio, The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9(2), 113–118 (2013).  https://doi.org/10.1038/nphys2515
  154. 154.
    M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (2002).  https://doi.org/10.1119/1.1463744
  155. 155.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961).  https://doi.org/10.1147/rd.53.0183
  156. 156.
    C.H. Bennett, Notes on landauer’s principle, reversible computation, and maxwell’s demon. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 34(3), 501–510 (2003).  https://doi.org/10.1016/S1355-2198(03)00039-X
  157. 157.
    L. Szilard, Über die ausdehnung der phänomenologischen thermodynamik auf die schwankungserscheinungen. Zeitschrift für Physik A Hadrons and Nuclei 32(1), 753–788 (1925).  https://doi.org/10.1007/BF01331713
  158. 158.
    L. Szilard, Über die entropieverminderung in einem thermodynamischen system bei eingriffen intelligenter wesen. Zeitschrift für Physik A Hadrons and Nuclei 53(11), 840–856 (1929).  https://doi.org/10.1007/BF01341281
  159. 159.
    T. Sagawa, Thermodynamics of information processing in small system. Prog. Theor. Phys. 127(1), 1–56 (2012).  https://doi.org/10.1143/PTP.127.1
  160. 160.
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized jarzynski equality. Nat. Phys. 6(12), 988–992 (2010).  https://doi.org/10.1038/nphys1821
  161. 161.
    A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of landauer/’s principle linking information and thermodynamics. Nature 483(7388), 187–189 (2012).  https://doi.org/10.1038/nature10872
  162. 162.
    P. Jukka, J.P. Pekola, Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11(2), 118–123 (2015).  https://doi.org/10.1038/nphys3169
  163. 163.
    J.D. Norton, Eaters of the lotus: Landauer’s principle and the return of maxwell’s demon. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 36(2), 375–411 (2005).  https://doi.org/10.1016/j.shpsb.2004.12.002
  164. 164.
    O.R. Shenker, Logic and Entropy (2000). http://philsci-archive.pitt.edu/id/eprint/115
  165. 165.
    R. Alicki, Information is not physical (2014). arXiv:1402.2414
  166. 166.
    P. Feyerabend, Consolations for the specialist. Crit. Growth Knowl. 4, 197–229 (1970).  https://doi.org/10.1017/CBO9781139171434.010
  167. 167.
    M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059
  168. 168.
    G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N.Y. Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015).  https://doi.org/10.1016/j.physrep.2015.04.003
  169. 169.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, The role of quantum information in thermodynamics?a topical review. J. Phys. A: Math. Theor. 49(14), 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  170. 170.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57(4), 545–579 (2016).  https://doi.org/10.1080/00107514.2016.1201896
  171. 171.
    K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence. New J. Phys. 18(2), 023045 (2016).  https://doi.org/10.1088/1367-2630/18/2/023045
  172. 172.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, The role of quantum information in thermodynamics: a topical review. J. Phys. A: Math. Theor. 49(14), 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  173. 173.
    F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. 112(11), 3275–3279 (2015).  https://doi.org/10.1073/pnas.1411728112
  174. 174.
    A. Rényi etal., On measures of entropy and information. in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (The Regents of the University of California, 1961). https://projecteuclid.org/euclid.bsmsp/1200512181
  175. 175.
    P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: work is not an observable. Phys. Rev. E 75(5), 050102 (2007).  https://doi.org/10.1103/PhysRevE.75.050102
  176. 176.
    A.J. Roncaglia, F. Cerisola, J.P. Paz, Work measurement as a generalized quantum measurement. Phys. Rev. Lett. 113(25), 250601 (2014).  https://doi.org/10.1103/PhysRevLett.113.250601
  177. 177.
    R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, T. Philbin, The impossible quantum work distribution (2017). Phys. Rev. A 97, 012131 (2018)Google Scholar
  178. 178.
    D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fix them. Chem. Sci. 8(2), 1008–1014 (2017).  https://doi.org/10.1039/C6SC04350J
  179. 179.
    E. Boukobza, H. Ritsch, Breaking the carnot limit without violating the second law: a thermodynamic analysis of off-resonant quantum light generation. Phys. Rev. A 87(6), 063845 (2013).  https://doi.org/10.1103/PhysRevA.87.063845
  180. 180.
    R. Alicki, From the gkls equation to the theory of solar and fuel cells. Open Syst. Inf. Dyn. 24(03), 1740007 (2017).  https://doi.org/10.1142/S1230161217400078
  181. 181.
    R. Kosloff, S.A. Rice, The influence of quantization on the onset of chaos in hamiltonian systems: the kolmogorov entropy interpretation. J. Chem. Phys. 74(2), 1340–1349 (1981).  https://doi.org/10.1063/1.441196
  182. 182.
    J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43(4), 2046 (1991).  https://doi.org/10.1103/PhysRevA.43.2046
  183. 183.
    M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50(2), 888 (1994).  https://doi.org/10.1103/PhysRevE.50.888
  184. 184.
    F.J. Dyson, Statistical theory of the energy levels of complex systems. i. J. Math. Phys. 3(1), 140–156 (1962)ADSMathSciNetCrossRefGoogle Scholar
  185. 185.
    H. Kim, T.N. Ikeda, D.A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis. Phys. Rev. E 90(5), 052105 (2014).  https://doi.org/10.1103/PhysRevE.90.052105
  186. 186.
    R. Steinigeweg, A. Khodja, H. Niemeyer, C. Gogolin, J. Gemmer, Pushing the limits of the eigenstate thermalization hypothesis towards mesoscopic quantum systems. Phys. Rev. Lett. 112(13), 130403 (2014).  https://doi.org/10.1103/PhysRevLett.112.130403
  187. 187.
    T.N. Ikeda, Y. Watanabe, M. Ueda. Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting bose gas. Phys. Rev. E 87(1), 012125 (2013).  https://doi.org/10.1103/PhysRevE.87.012125
  188. 188.
    V. Alba, Eigenstate thermalization hypothesis and integrability in quantum spin chains. Phys. Rev. B 91(15), 155123 (2015).  https://doi.org/10.1103/PhysRevB.91.155123
  189. 189.
    P. Zhao, H. De Raedt, S. Miyashita, F. Jin, K. Michielsen, Dynamics of open quantum spin systems: An assessment of the quantum master equation approach. Phys. Rev. E 94(2), 022126 (2016).  https://doi.org/10.1103/PhysRevE.94.022126
  190. 190.
    H. De Raedt, F. Jin, M.I. Katsnelson, K. Michielsen, Relaxation, thermalization, and markovian dynamics of two spins coupled to a spin bath. Phys. Rev. E 96(5), 053306 (2017).  https://doi.org/10.1103/PhysRevE.96.053306

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and AstrophysicsUniversity of GdańskGdańskPoland
  2. 2.The Fritz Haber Research Center for Molecular Dynamics, The Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations