Advertisement

Aggregation-Induced Emitters in Light Harvesting

  • Bolong Zhang
  • Can Gao
  • Nicolau Saker Neto
  • Wallace W. H. Wong
Chapter

Abstract

Light harvesting is an integral part of energy conversion of sunlight into chemicals and electricity. In this chapter, the application of materials with aggregation-induced emission properties in artificial photosynthesis and photon refining technologies is summarized and discussed. In artificial photosynthesis, aggregation-induced emitters enable efficient energy transfer in self-assembled arrays. Thin film luminescent solar concentrators have also been made possible by aggregation-induced emitters as high concentrations of these chromophores can be used in such devices. Aggregates are also important in photon upconversion where proximity of chromophores enables efficient triplet energy transfer and triplet-triplet annihilation processes.

Keywords

Light harvesting Energy transfer Artificial photosynthesis Luminescent solar concentrators Photon upconversion Self-assembly 

References

  1. 1.
    The history of solar. https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf. Accessed 27 Feb 2018
  2. 2.
    Horace de Saussure and his hot boxes of the 1700’s. http://www.solarcooking.org/saussure.htm. Accessed 27 Feb 2018
  3. 3.
    Stirling engines: history 1816-1937. http://sesusa.org/history.1816.htm. Accessed 27 Feb 2018
  4. 4.
    Becquerel A-E (1839). CR Acad Sci 9(145):1Google Scholar
  5. 5.
    Fritts CE (1883). Am J Sci 156:465–472CrossRefGoogle Scholar
  6. 6.
    Chapin DM, Fuller CS, Pearson GL (1957). Solar energy converting apparatus. US Patent 2780765AGoogle Scholar
  7. 7.
    Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de-Pison FJ, Antonanzas-Torres F (2016). Sol Energy 136:78–111CrossRefGoogle Scholar
  8. 8.
    Gratzel M (2001). Nature 414(6861):338–344CrossRefGoogle Scholar
  9. 9.
    Arp TB, Barlas Y, Aji V, Gabor NM (2016). Nano Lett 16(12):7461–7466CrossRefGoogle Scholar
  10. 10.
    Berardi S, Drouet S, Francas L, Gimbert-Surinach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014). Chem Soc Rev 43(22):7501–7519CrossRefGoogle Scholar
  11. 11.
    Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011). Nat Chem 3(10):763–774CrossRefGoogle Scholar
  12. 12.
    Hong Y, Lam JW, Tang BZ (2011). Chem Soc Rev 40(11):5361–5388CrossRefGoogle Scholar
  13. 13.
    Mei J, Hong Y, Lam JW, Qin A, Tang Y, Tang BZ (2014). Adv Mater 26(31):5429–5479CrossRefGoogle Scholar
  14. 14.
    Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ (2015). Chem Rev 115(21):11718–11940CrossRefGoogle Scholar
  15. 15.
    Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai JY, Hu H, Ma T, Hu R, Yu D, Huang X, Tang BZ, Yan H (2015). Adv Mater 27(6):1015–1020CrossRefGoogle Scholar
  16. 16.
    Rananaware A, Gupta A, Li J, Bilic A, Jones L, Bhargava S, Bhosale SV (2016). Chem Commun 52(55):8522–8525CrossRefGoogle Scholar
  17. 17.
    Shi J, Huang J, Tang R, Chai Z, Hua J, Qin J, Li Q, Li Z (2012). Eur J Org Chem 2012(27):5248–5255CrossRefGoogle Scholar
  18. 18.
    Lambers H, Chapin FS, Pons TL (2008). Photosynthesis. In: Plant physiological ecology. Springer, New York, pp 11–99CrossRefGoogle Scholar
  19. 19.
    Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley, Hoboken, NJGoogle Scholar
  20. 20.
    Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzkus M (2002). Nature 417(6888):533–535CrossRefGoogle Scholar
  21. 21.
    Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD (2017). Chem Rev 117(2):249–293CrossRefGoogle Scholar
  22. 22.
    Frischmann PD, Mahata K, Wurthner F (2013). Chem Soc Rev 42(4):1847–1870CrossRefGoogle Scholar
  23. 23.
    Demchenko AP (2009). Fluorescence detection techniques. In: Introduction to fluorescence sensing. pp 65–118Google Scholar
  24. 24.
    Medintz I, Hildebrandt N (2013) FRET-Förster resonance energy transfer: from theory to applications. Wiley, Hoboken, NJCrossRefGoogle Scholar
  25. 25.
    Zhang M, Yin X, Tian T, Liang Y, Li W, Lan Y, Li J, Zhou M, Ju Y, Li G (2015). Chem Commun 51(50):10210–10213CrossRefGoogle Scholar
  26. 26.
    Zeng Y, Li P, Liu X, Yu T, Chen J, Yang G, Li Y (2014). Polym Chem 5(20):5978–5984CrossRefGoogle Scholar
  27. 27.
    Lv Q, Liu M, Wang K, Mao L, Xu D, Zeng G, Liang S, Deng F, Zhang X, Wei Y (2017). J Taiwan Inst Chem E 75:292–298CrossRefGoogle Scholar
  28. 28.
    Arseneault M, Leung NLC, Fung LT, Hu R, Morin J-F, Tang BZ (2014). Polym Chem 5(20):6087–6096CrossRefGoogle Scholar
  29. 29.
    Suresh VM, Bonakala S, Roy S, Balasubramanian S, Maji TK (2014). J Phys Chem C 118(42):24369–24376CrossRefGoogle Scholar
  30. 30.
    Qiao F, Zhang L, Lian Z, Yuan Z, Yan C-Y, Zhuo S, Zhou Z-Y, Xing L-B (2018). J Photochem Photobiol A 355:419–424CrossRefGoogle Scholar
  31. 31.
    Qiao F, Yuan Z, Lian Z, Yan C-Y, Zhuo S, Zhou Z-Y, Xing L-B (2017). Dyes Pigments 146:392–397CrossRefGoogle Scholar
  32. 32.
    Wang S, Ye J-H, Han Z, Fan Z, Wang C, Mu C, Zhang W, He W (2017). RSC Adv 7(57):36021–36025CrossRefGoogle Scholar
  33. 33.
    McKenna B, Evans RC (2017). Adv Mater 29(28):1606491CrossRefGoogle Scholar
  34. 34.
    Shockley W, Queisser HJ (1961). J Appl Phys 32(3):510–519CrossRefGoogle Scholar
  35. 35.
    Rühle S (2016). Sol Energy 130:139–147CrossRefGoogle Scholar
  36. 36.
    Würfel P (2005). Limitations on energy conversion in solar cells. In: Physics of solar cells. Wiley-VCH Verlag GmbH, Hoboken, NJ, pp 137–153Google Scholar
  37. 37.
    Shockley–Queisser limit. https://en.wikipedia.org/wiki/Shockley%E2%80%93Queisser_limit. Accessed 27 Feb 2018
  38. 38.
    Debije MG, Verbunt PPC (2012). Adv Energy Mater 2(1):12–35CrossRefGoogle Scholar
  39. 39.
    Klampaftis E, Ross D, McIntosh KR, Richards BS (2009). Sol Energy Mater Sol Cells 93(8):1182–1194CrossRefGoogle Scholar
  40. 40.
    van Sark WG, Barnham KWJ, Slooff LH (2008). Opt Express 16(26):21773–21792CrossRefGoogle Scholar
  41. 41.
    Shurcliff WA (1951). J Opt Soc Am 41(3):209CrossRefGoogle Scholar
  42. 42.
    Weber WH, Lambe J (1976). Appl Opt 15(10):2299–2300CrossRefGoogle Scholar
  43. 43.
    Swartz BA, Cole T, Zewail AH (1977). Opt Lett 1(2):73–75CrossRefGoogle Scholar
  44. 44.
    Banal JL, Zhang B, Jones DJ, Ghiggino KP, Wong WW (2017). Acc Chem Res 50(1):49–57CrossRefGoogle Scholar
  45. 45.
    Xu J, Zhang B, Jansen M, Goerigk L, Wong WWH, Ritchie C (2017). Angew Chem Int Ed 56(44):13882–13886CrossRefGoogle Scholar
  46. 46.
    Zhang B, Soleimaninejad H, Jones DJ, White JM, Ghiggino KP, Smith TA, Wong WWH (2017). Chem Mater 29(19):8395–8403CrossRefGoogle Scholar
  47. 47.
    Banal JL, Soleimaninejad H, Jradi FM, Liu M, White JM, Blakers AW, Cooper MW, Jones DJ, Ghiggino KP, Marder SR, Smith TA, Wong WWH (2016). J Phys Chem C 120(24):12952–12958CrossRefGoogle Scholar
  48. 48.
    Gutierrez GD, Coropceanu I, Bawendi MG, Swager TM (2016). Adv Mater 28(3):497–501CrossRefGoogle Scholar
  49. 49.
    Meinardi F, McDaniel H, Carulli F, Colombo A, Velizhanin KA, Makarov NS, Simonutti R, Klimov VI, Brovelli S (2015). Nat Nanotechnol 10(10):878–885CrossRefGoogle Scholar
  50. 50.
    Shi J, Chang N, Li C, Mei J, Deng C, Luo X, Liu Z, Bo Z, Dong YQ, Tang BZ (2012). Chem Commun 48(86):10675–10677CrossRefGoogle Scholar
  51. 51.
    Banal JL, Ghiggino KP, Wong WW (2014). Phys Chem Chem Phys 16(46):25358–25363CrossRefGoogle Scholar
  52. 52.
    Iasilli G, Battisti A, Tantussi F, Fuso F, Allegrini M, Ruggeri G, Pucci A (2014). Macromol Chem Phys 215(6):499–506CrossRefGoogle Scholar
  53. 53.
    Banal JL, White JM, Ghiggino KP, Wong WW (2014). Sci Rep 4:4635CrossRefGoogle Scholar
  54. 54.
    De Nisi F, Francischello R, Battisti A, Panniello A, Fanizza E, Striccoli M, Gu X, Leung NLC, Tang BZ, Pucci A (2017). Mater Chem Front 1(7):1406–1412CrossRefGoogle Scholar
  55. 55.
    Valeur B, Berberan-Santos M (2012) Molecular fluorescence: principles and applications. Wiley, Hoboken, NJCrossRefGoogle Scholar
  56. 56.
    Minei P, Fanizza E, Rodríguez AM, Muñoz-García AB, Cimino P, Pavone M, Pucci A (2016). RSC Adv 6(21):17474–17482CrossRefGoogle Scholar
  57. 57.
    Lucarelli J, Lessi M, Manzini C, Minei P, Bellina F, Pucci A (2016). Dyes Pigments 135:154–162CrossRefGoogle Scholar
  58. 58.
    Carlotti M, Fanizza E, Panniello A, Pucci A (2015). Sol Energy 119:452–460CrossRefGoogle Scholar
  59. 59.
    Mori R, Iasilli G, Lessi M, Muñoz-García AB, Pavone M, Bellina F, Pucci A (2018). Polym Chem 9:1168–1177CrossRefGoogle Scholar
  60. 60.
    Hu R, Gomez-Duran CF, Lam JW, Belmonte-Vazquez JL, Deng C, Chen S, Ye R, Pena-Cabrera E, Zhong Y, Wong KS, Tang BZ (2012). Chem Commun 48(81):10099–10101CrossRefGoogle Scholar
  61. 61.
    Chen S, Liu J, Liu Y, Su H, Hong Y, Jim CKW, Kwok RTK, Zhao N, Qin W, Lam JWY, Wong KS, Tang BZ (2012). Chem Sci 3(6):1804–1809CrossRefGoogle Scholar
  62. 62.
    Zhang J, Chen R, Zhu Z, Adachi C, Zhang X, Lee CS (2015). ACS Appl Mater Interfaces 7(47):26266–26274CrossRefGoogle Scholar
  63. 63.
    Banal JL, White JM, Lam TW, Blakers AW, Ghiggino KP, Wong WWH (2015). Adv Energy Mater 5(19):1500818CrossRefGoogle Scholar
  64. 64.
    Zhu M, Zhuo Y, Cai K, Guo H, Yang F (2017). Dyes Pigments 147:343–349CrossRefGoogle Scholar
  65. 65.
    Zhao Q, Zhang XA, Wei Q, Wang J, Shen XY, Qin A, Sun JZ, Tang BZ (2012). Chem Commun 48(95):11671–11673CrossRefGoogle Scholar
  66. 66.
    Zhao Q, Zhang S, Liu Y, Mei J, Chen S, Lu P, Qin A, Ma Y, Sun JZ, Tang BZ (2012). J Mater Chem 22(15):7387–7394CrossRefGoogle Scholar
  67. 67.
    Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008). Science 321(5886):226–228CrossRefGoogle Scholar
  68. 68.
    Zhang B, Banal JL, Jones DJ, Tang BZ, Ghiggino KP, Wong WWH (2018). Mater Chem Front 2:615–619CrossRefGoogle Scholar
  69. 69.
    de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI (2011). Energy Environ Sci 4(12):4835–4848CrossRefGoogle Scholar
  70. 70.
    Monguzzi A, Frigoli M, Larpent C, Tubino R, Meinardi F (2012). Adv Funct Mater 22(1):139–143CrossRefGoogle Scholar
  71. 71.
    Zhou J, Liu Q, Feng W, Sun Y, Li F (2015). Chem Rev 115(1):395–465CrossRefGoogle Scholar
  72. 72.
    Baluschev S, Yakutkin V, Miteva T, Wegner G, Roberts T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A (2008). New J Phys 10(1):013007CrossRefGoogle Scholar
  73. 73.
    McCusker CE, Castellano FN (2016). Top Curr Chem 374(2):19CrossRefGoogle Scholar
  74. 74.
    Schulze TF, Schmidt TW (2015). Energy Environ Sci 8(1):103–125CrossRefGoogle Scholar
  75. 75.
    Simon YC, Weder C (2012). J Mater Chem 22(39):20817–20830CrossRefGoogle Scholar
  76. 76.
    Duan P, Yanai N, Kurashige Y, Kimizuka N (2015). Angew Chem Int Ed 54(26):7544–7549CrossRefGoogle Scholar
  77. 77.
    Duan P, Asthana D, Nakashima T, Kawai T, Yanai N, Kimizuka N (2017). Faraday Discuss 196:305–316CrossRefGoogle Scholar
  78. 78.
    Li L, Zeng Y, Yu T, Chen J, Yang G, Li Y (2017). ChemSusChem 10(22):4610–4615CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bolong Zhang
    • 1
  • Can Gao
    • 1
  • Nicolau Saker Neto
    • 1
  • Wallace W. H. Wong
    • 1
  1. 1.ARC Centre of Excellence in Exciton Science, School of ChemistryBio21 Institute, University of MelbourneParkvilleAustralia

Personalised recommendations