Advertisement

Aggregation-Induced Emission (AIE): A Versatile Tool for Chemo/Biosensing

  • Ruchi Tejpal
  • Vandana Bhalla
  • Manoj Kumar
Chapter

Abstract

AIE as a photo-physical phenomenon is growing at an exponential rate which provides unique opportunities in different scientific domains. Inspired from fascinating properties of AIE-based conventional frameworks like tetraphenylethylene (TPE), hexaphenylsilole (HPS), new motifs, and their aggregation properties have been rationalized rapidly. In this chapter, the current aspects of AIE-based self-assembled probes using novel frameworks like hexaphenylbenzene (HPB), hexaarylbenzene (HAB), pentacenequinone, pyrazine, and terphenyl are documented. Further, the applications of these probes in chemo/biosensing are presented with emphasis on our current reports.

Keywords

Aggregation AIE AEE Biosensors Chemosensors Nitroaromatics 

References

  1. 1.
    Epple R, Forster TZ (1954). Electrochem Angew Phys Chem 58:783–787Google Scholar
  2. 2.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, LondonGoogle Scholar
  3. 3.
    Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001). Chem Commun (Camb) 0:1740–1741Google Scholar
  4. 4.
    An BK, Kwon SK, Jung SD, Park SY (2002). J Am Chem Soc 124(48):14410–14415Google Scholar
  5. 5.
    de Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997). Chem Rev 97:1515–1566Google Scholar
  6. 6.
    Callan JF, de Silva AP, Magri DC (2005). Tetrahedron 61(36):8551–8588Google Scholar
  7. 7.
    Xu ZC, Yoon J, Spring DR (2010). Chem Soc Rev 39:1996Google Scholar
  8. 8.
    Zhao Q, Li F, Huang C (2010). Chem Soc Rev 39:3007–3030Google Scholar
  9. 9.
    Rettig W, Lapouyade R (1994) Topics in fluorescence spectroscopy. In: Lakowicz JR (ed) Probe design and chemical sensing, vol 4. Plenum Press, New York, p 109Google Scholar
  10. 10.
    Sapsford KE, Berti L, Medintz IL (2006). Angew Chem Int Ed Engl 45(28):4562–4589Google Scholar
  11. 11.
    Lodeiro C, Pina F (2009). Coord Chem Rev 253:1353–1383Google Scholar
  12. 12.
    Bolton O, Lee K, Kim HJ, Lin KY, Kim J (2011). Nat Chem 3(5):205–210Google Scholar
  13. 13.
    Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007). J Phys Chem B 111:5861–5868Google Scholar
  14. 14.
    Zhang Y, Wang JH, Zheng WJ, Chen TF, Tong QX, Li D (2014). J Mater Chem B 2:4159–4166Google Scholar
  15. 15.
    Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ (2003). Chem Mater 15(7):1535–1546Google Scholar
  16. 16.
    Hong Y, Lama JWY, Tang BZ (2009). Chem Commun 0:4332–4353Google Scholar
  17. 17.
    Hong Y, Lam JWY, Tang BZ (2011). Chem Soc Rev 40:5361–5388Google Scholar
  18. 18.
    Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015). Chem Soc Rev 44:4228–4238Google Scholar
  19. 19.
    Mei J, NLC L, RTK K, JWY L, Tang BZ (2015). Chem Rev 115:11718–11940Google Scholar
  20. 20.
    Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore JS, Zhang L (2007). J Am Chem Soc 129:6978–6979Google Scholar
  21. 21.
    Zang L, Che Y, Moore JS (2008). Acc Chem Res 41:1596–1608Google Scholar
  22. 22.
    Zyryanov GV, Palacios MA, Anzenbacher P (2008). Org Lett 10:3681–3684Google Scholar
  23. 23.
    Whitney EN, Rolfes SR (2015) Understanding nutrition14th edn. Wadsworth, Cengage Learning, BelmontGoogle Scholar
  24. 24.
    Griffiths AJF, Gelbart WM, Miller JH, Lewontin RC (1999) Modern genetic analysis. W. H. Freeman, New York.Google Scholar
  25. 25.
    Yao J, Yang M, Duan Y (2014). Chem Rev 114:6130–6178Google Scholar
  26. 26.
    Demchenko AP (2009) Introduction to fluorescence sensing. Springer, New YorkGoogle Scholar
  27. 27.
    Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X (2011). Angew Chem Int Ed 50(28):6306–6310Google Scholar
  28. 28.
    Wu J, Liu W, Ge J, Zhang H, Wang P (2011). Chem Soc Rev 40:3483–3495Google Scholar
  29. 29.
    Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010). Angew Chem Int Ed 49:5708–5711Google Scholar
  30. 30.
    Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011). Angew Chem Int Ed 50:401–404Google Scholar
  31. 31.
    Domaille DW, Que EL, Chang CJ (2008). Nat Chem Biol 4:168–175Google Scholar
  32. 32.
    Lim MH, Lippard SJ (2007). Acc Chem Res 40:41–51Google Scholar
  33. 33.
    Jares-Erijman EA, Jovin TM (2003). Nat Biotechnol 21:1387–1395Google Scholar
  34. 34.
    Hang Y, Yang L, Qu Y, Hua J (2014). Tetrahedron Lett 55(51):6998–7001Google Scholar
  35. 35.
    Li W, Chen D, Wang H, Luo S, Dong L, Zhang Y, Shi J, Tong B, Dong Y (2015). ACS Appl Mater Interfaces 7:26094–26100Google Scholar
  36. 36.
    Sun J, Lu Y, Wang L, Cheng D, Sun Y, Zeng X (2013). Polym Chem 4:4045–4051Google Scholar
  37. 37.
    Chang Y, Jin L, Duan J, Zhang Q, Wang J, Lu Y (2015). RSC Adv 5:103358–103364Google Scholar
  38. 38.
    Zhu Z, Xu L, Li H, Zhou X, Qin J, Yang C (2014). Chem Commun 50:7060–7062Google Scholar
  39. 39.
    Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014). Chem Commun 50:11833–11836Google Scholar
  40. 40.
    Mei J, Wang Y, Tong J, Wang J, Qin A, Sun JZ, Tang BZ (2013). Chem A Eur J 19:613Google Scholar
  41. 41.
    Nakamura M, Sanji T, Tanaka M (2011). Chem A Eur J 17:5344–5349Google Scholar
  42. 42.
    Chopra S, Singh A, Venugopalan P, Singh N, Kaur N (2017). ACS Sustain Chem Eng 5:1287–1296Google Scholar
  43. 43.
    Huang YJ, Ouyang W-J, Wu X, Li Z, Fossey JS, James TD, Jiang Y-B (2013). J Am Chem Soc 135:1700–1703Google Scholar
  44. 44.
    Wang X, Huang Y, Lv W, Li C, Zeng W, Zhang Y, Feng X (2017). Anal Methods 9:1872–1875Google Scholar
  45. 45.
    Kwok RTK, Geng J, Lam JWY, Zhao E, Wang G, Zhan R, Liu B, Tang BZ (2014). J Mater Chem B 2:4134–4141Google Scholar
  46. 46.
    Gu X, Zhang G, Zhang D (2012). Analyst 137:365–369Google Scholar
  47. 47.
    Tong H, Hong Y, Dong Y, Haeussler M, Li Z, Lam JWY, Dong Y, Sung HHY, Williams ID, Tang BZ (2007). J Phys Chem B 111:11817–11823Google Scholar
  48. 48.
    Bhalla V, Vij V, Dhir A, Kumar M (2012). Chem A Eur J 18:3765–3772Google Scholar
  49. 49.
    Davis JJ, Morgan DA, Wrathmell CL, Axford DN, Zhao J, Wang N (2005). J Mater Chem 15:2160–2174Google Scholar
  50. 50.
    Stegink LD (1987). Am J Clin Nutr 46:204–215Google Scholar
  51. 51.
    Leuchtenberger W, Huthmacher K, Drauz K (2005). Appl Microbiol Biotechnol 69(1):1–8Google Scholar
  52. 52.
    Peng H, Chen W, Cheng Y, Hakuna L, Strongin R, Wang B (2012). Sensors 12(11):15907–15946Google Scholar
  53. 53.
    Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsinic IK, Aggarwal BB (2011). Nat Prod Rep 28:1937–1955Google Scholar
  54. 54.
    Nigam V, Acharya A, Paarekh PM, Garg G (2012). Int J Pharmacol Ther 2:2249Google Scholar
  55. 55.
    Lee A, Patterson V (1993). Acta Neurol Scand 88(5):334–338Google Scholar
  56. 56.
    Kaur S, Bhalla V, Kumar M (2014). Chem Commun 50:9725–9728Google Scholar
  57. 57.
    Cohen SS (1998) A guide to polyamines. Oxford University Press, OxfordGoogle Scholar
  58. 58.
    Tabor CW, Tabor H (1984). Annu Rev Biochem 53:749–790Google Scholar
  59. 59.
    Cipolla BG, Ziade J, Bansard JY, Moulinoux JP, Staerman F, Quemener V, Lobel B, Guille F (1996). Cancer 78:1055–1065Google Scholar
  60. 60.
    Tejpal R, Kumar M, Bhalla V (2018). Sens Actuators B 258:841–849Google Scholar
  61. 61.
    Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University Press, CambridgeGoogle Scholar
  62. 62.
    Vineis P, Pirastu R (1997) Cancer Causes Control 8:346–355Google Scholar
  63. 63.
    Gao M, Li S, Lin Y, Geng Y, Ling X, Wang L, Qin A, Tang BZ (2016) ACS Sens 1(2):179–184Google Scholar
  64. 64.
    Pramanik S, Deol H, Bhalla V, Kumar M (2018). ACS Appl Mater Interfaces 10(15):12112–12123Google Scholar
  65. 65.
    Baskar R, Bian J (2011). Eur J Pharmacol 656:5–9Google Scholar
  66. 66.
    Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, Zeng F, Chen P, Wang C (2011). PLoS One 6:21971Google Scholar
  67. 67.
    Pramanik S, Bhalla V, Kim HM, Singh H, Leeb HW, Kumar M (2015). Chem Commun 51:15570–15573Google Scholar
  68. 68.
    Thomas SW, Joly GD, Swager TM (2007). Chem Rev 107:1339–1386Google Scholar
  69. 69.
    Yang J-S, Swager TM (1998). J Am Chem Soc 120:11864–11873Google Scholar
  70. 70.
    Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F (2010). Angew Chem Int Ed 49:6830–6835Google Scholar
  71. 71.
    Germain ME, Knapp MJ (2009). Chem Soc Rev 38:2543–2555Google Scholar
  72. 72.
    Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRS press, Boca RatonGoogle Scholar
  73. 73.
    Fainberg A (1992). Science 255:1531–1537Google Scholar
  74. 74.
    Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000). Chem Rev 100:2595–2626Google Scholar
  75. 75.
    Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung W-J, Wang E, Hong S, Majumdar A, Lee S-W (2011). ACS Nano 5:2824–2830Google Scholar
  76. 76.
    Holdsworth G, Johnson MS (2005) USACHPPM, 37-EJ1138-01J: 1–14Google Scholar
  77. 77.
    Woodfin RL (2007) Trace chemical sensing of explosives. Wiley, ChichesterGoogle Scholar
  78. 78.
    Narayanan A, Varnavski OP, Swager TM, Goodson T (2008). J Phys Chem C 112(4):881–884Google Scholar
  79. 79.
    Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012). J Am Chem Soc 134(10):4834–4841Google Scholar
  80. 80.
    Ding D, Li K, Liu B, Tang BZ (2013). Acc Chem Res 46(11):2441–2453Google Scholar
  81. 81.
    Toal SJ, Magde D, Trogler WC (2005). Chem Commun 0:5465–5467Google Scholar
  82. 82.
    Bhalla V, Gupta A, Kumar M (2012). Org Lett 14:3112–3115Google Scholar
  83. 83.
    Kumar M, Vij V, Bhalla V (2012). Langmuir 28:12417–12421Google Scholar
  84. 84.
    Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y (2013). Chem Commun 49:4764–4766Google Scholar
  85. 85.
    Sanchez JC, Trogler WC (2008). J Mater Chem 18:3143Google Scholar
  86. 86.
    Kaur S, Bhalla V, Vij V, Kumar M (2014). J Mater Chem C 2:3936–3941Google Scholar
  87. 87.
    Wu J, Baumgarten M, Debije MG, Warman JM, Mullen K (2004). Angew Chem Int Ed 43:5331–5335Google Scholar
  88. 88.
    Zhi L, Mullen K (2008). J Mater Chem 18:1472–1484Google Scholar
  89. 89.
    Feng X, Pisula W, Takase M, Dou X, Enkelmann V, Wagner M, Ding N, Mullen K (2008). Chem Mater 20:2872–2874Google Scholar
  90. 90.
    Vij V, Bhalla V, Kumar M (2013). ACS Appl Mater Interfaces 5:5373–5380Google Scholar
  91. 91.
    Bhalla V, Arora H, Singh H, Kumar M (2013). Dalton Trans 42:969–974Google Scholar
  92. 92.
    Bhalla V, Singh H, Kumar M, Prasad SK (2011). Langmuir 27:15275–15281Google Scholar
  93. 93.
    Germain ME, Knapp MJ (2008). J Am Chem Soc 130(16):5422–5423Google Scholar
  94. 94.
    Germain ME, Khalifah PG, Vargo TR, Knapp MJ (2007). Inorg Chem 46(11):4422–4429Google Scholar
  95. 95.
    Bhalla V, Kaur S, Vij V, Kumar M (2013). Inorg Chem 52:4860–4865Google Scholar
  96. 96.
    Philip AG (2010). Chem Soc Rev 39:3746–3771Google Scholar
  97. 97.
    Gale PA (2001). Coord Chem Rev 213:79Google Scholar
  98. 98.
    Anseeuw K, Delvau N, Burillo-Putze G, De Iaco F, Geldner G, Holmström P, Lambert Y, Sabbe M (2013). Eur J Emerg Med 20(1):2–9Google Scholar
  99. 99.
    (1996) Guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar
  100. 100.
    Bhalla V, Pramanik S, Kumar M (2013). Chem Commun 49:895–888Google Scholar
  101. 101.
    Pramanik S, Bhalla V, Kumar M (2014). ACS Appl Mater Interfaces 6:5930–5939Google Scholar
  102. 102.
    Terkeltaub RA (2001). Am J Physiol Cell Physiol 281:1–11Google Scholar
  103. 103.
    Kim IB, Han MH, Phillips RL, Samanta B, Rotello VM, Zhang J, Bunz UHF (2009). Chem A Eur J 15:449–456Google Scholar
  104. 104.
    Park C, Hong JI (2010). Tetrahedron Lett 51:1960–1962Google Scholar
  105. 105.
    Pramanik S, Bhalla V, Kumar M (2017). New J Chem 41:4806–4813Google Scholar
  106. 106.
    Fawell J (2016) Fluoride in drinking-water. World Health Organisation, GenevaGoogle Scholar
  107. 107.
    Aoba T, Fejerskov O (2002). Crit Rev Oral Biol Med 13(2):155–170Google Scholar
  108. 108.
    Everett ET (2011). J Dent Res 90:552–560Google Scholar
  109. 109.
    Horowitz HS (2003). J Public Health Dent 63:3–8Google Scholar
  110. 110.
    Xu Z, Kim SK, Yoon J (2010). Chem Soc Rev 39:1457Google Scholar
  111. 111.
    Li AF, Wang JH, Wang F, Jiang YB (2010). Chem Soc Rev 39:3729Google Scholar
  112. 112.
    Duke RM, Veale EB, Pfeffer FM, Krugerc PE, Gunnlaugsson T (2010). Chem Soc Rev 39:3936Google Scholar
  113. 113.
    Skotheim TA, Elsenbaumer RL, Reynolds J (eds) (1997) Handbook of conducting polymers2nd edn. Marcel Dekker, New YorkGoogle Scholar
  114. 114.
    McQuade DT, Pullen AE, Swager TM (2000). Chem Rev 100:2537Google Scholar
  115. 115.
    Deol H, Bhalla V, Kumar M (2018). Sens Actuators B 258:682–693Google Scholar
  116. 116.
    Kaim W, Schwederski B (1991) Bioinorganic chemistry: inorganic elements in chemistry of life, an introduction and guide. Wiley Interscience, New YorkGoogle Scholar
  117. 117.
    Barcelo J, Poschenrieder C (2002). Environ Exp Bot 48:75–92Google Scholar
  118. 118.
    Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007). J Toxicol Environ Health B 10:1–269Google Scholar
  119. 119.
    Gupta N, Kaur N, Bhalla V, Parihar RD, Ohri P, Kaur G, Kumar M (2017). Chem Commun 53:12646–12649Google Scholar
  120. 120.
    Steinwall O, Olsson Y (1969). Acta Neurol Scand 45:351–361Google Scholar
  121. 121.
    Nolan EM, Lippard SJ (2003). J Am Chem Soc 125:14270–14271Google Scholar
  122. 122.
    Kumar M, Dhir A, Bhalla V, Sharma R, Puri RK, Mahajan RK (2010). Analyst 135:1600–1605Google Scholar
  123. 123.
    Bhalla V, Tejpal R, Kumar M (2010). Sens Actuators B 151:180–185Google Scholar
  124. 124.
    Bhalla V, Vij V, Tejpal R, Singh G, Kumar M (2013). Dalton Trans 42:4456–4463Google Scholar
  125. 125.
    Singh G, Reja SI, Bhalla V, Kaur D, Kaur P, Arora S, Kumar M (2017). Sens Actuators B 249:311–320Google Scholar
  126. 126.
    Kaur S, Kumar M, Bhalla V (2015). Chem Commun 51:4085–4088Google Scholar
  127. 127.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009). Toxicol Lett 190(2):156–162Google Scholar
  128. 128.
    Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong MJ (2013). Mater Chem B 1:2719–2723Google Scholar
  129. 129.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000). J Biomed Mater Res 52:662–668Google Scholar
  130. 130.
    Pramanik S, Bhalla V, Kumar M (2015). ACS Appl Mater Interfaces 7(41):22786–22795Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ruchi Tejpal
    • 1
  • Vandana Bhalla
    • 1
  • Manoj Kumar
    • 1
  1. 1.Department of ChemistryUGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev UniversityAmritsarIndia

Personalised recommendations