Advertisement

Perarylation as a Strategy Toward Aggregation-Induced Emitters: Will They Ever Be Stable?

  • Jan Freudenberg
  • Uwe H. F. Bunz
Chapter

Abstract

The periphery of most AIEgens is decorated with aryl substituents, which, according to the principle of restricted intramolecular motion, play a key role for fluorescence behavior of AIEgens. However, these peripheral aryl substituents create structural motifs, which undergo photoreactions (stilbenes, ortho-terphenyls, etc.). The sterically overcrowded molecules thus seek to relax their geometry by photoisomerization reactions, leading to energetically favored species. In this chapter, we will first give a brief overview of examples of perarylated AIE emitters vs. their non-AIE counterparts, then have a look at the photochemistry of stilbenes and ortho-terphenyls, dealing with their excited states and photochemistry, and discuss examples of photolabile AIEgens and the extent of their lability (hexaarylbutadienes, distyrylbenzene derivatives). Finally, we will have a look at strategies to stabilize these structural motifs, suppress the photocyclization, and look at the applicability to AIE active molecules.

Keywords

Photochemistry Hexaarylbutadiene Distyrylbenzenes Perarylation Electrocyclization 

References

  1. 1.
    Ning Z, Chen Z, Zhang Q et al (2007) Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter. Adv Funct Mater 17(18):3799–3807.  https://doi.org/10.1002/adfm.200700649CrossRefGoogle Scholar
  2. 2.
    Qin W, Yang Z, Jiang Y et al (2015) Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes. Chem Mater 27(11):3892–3901.  https://doi.org/10.1021/acs.chemmater.5b00568CrossRefGoogle Scholar
  3. 3.
    Aldred MP, Zhang G-F, Li C et al (2013) Optical properties and red to near infrared piezo-responsive fluorescence of a tetraphenylethene–perylenebisimide–tetraphenylethene triad. J Mater Chem C 1(40):6709–6718.  https://doi.org/10.1039/c3tc31452aCrossRefGoogle Scholar
  4. 4.
    Zhang R, Gao M, Bai S et al (2015) A fluorescent light-up platform with “AIE + ESIPT” characteristics for multi-target detection both in solution and on paper strip. J Mater Chem B 3(8):1590–1596.  https://doi.org/10.1039/C4TB01937GCrossRefGoogle Scholar
  5. 5.
    Lu H, Xu B, Dong Y et al (2010) Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation-induced emission characteristics. Langmuir 26(9):6838–6844.  https://doi.org/10.1021/la904727tCrossRefGoogle Scholar
  6. 6.
    Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (29):4332–4353.  https://doi.org/10.1039/b904665h
  7. 7.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388.  https://doi.org/10.1039/c1cs15113dCrossRefGoogle Scholar
  8. 8.
    Mei J, Hong Y, Lam JWY et al (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479.  https://doi.org/10.1002/adma.201401356CrossRefGoogle Scholar
  9. 9.
    Mei J, Leung NLC, Kwok RTK et al. (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev (21):11718–11940.  https://doi.org/10.1021/acs.chemrev.5b00263CrossRefGoogle Scholar
  10. 10.
    Tang BZ, Qin A (2014) Aggregation-induced emission: fundamentals, vol 1. Wiley, ChichesterGoogle Scholar
  11. 11.
    Tang BZ, Qin A (2013) Aggregation-induced emission: applications. Wiley, ChichesterGoogle Scholar
  12. 12.
    Xie Z, Yang B, Cheng G et al (2005) Supramolecular interactions induced fluorescence in crystal: anomalous emission of 2,5-diphenyl-1,4-distyrylbenzene with all cis double bonds. Chem Mater 17(6):1287–1289.  https://doi.org/10.1021/cm048400zCrossRefGoogle Scholar
  13. 13.
    Liu Y, Lam JWY, Zheng X et al (2016) Aggregation-induced emission and photocyclization of poly(hexaphenyl-1,3-butadiene)s synthesized from “1 + 2” polycoupling of internal alkynes and arylboronic acids. Macromolecules 49(16):5817–5830.  https://doi.org/10.1021/acs.macromol.6b01148CrossRefGoogle Scholar
  14. 14.
    Tang BZ, Zhan X, Yu G et al (2001) Efficient blue emission from siloles. J Mater Chem 11(12):2974–2978.  https://doi.org/10.1039/b102221kCrossRefGoogle Scholar
  15. 15.
    Chen J, Law CCW, Lam JWY et al (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15(7):1535–1546.  https://doi.org/10.1021/cm021715zCrossRefGoogle Scholar
  16. 16.
    Dong Y, Lam JWY, Qin A et al (2007) Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl Phys Lett 91(1):11111–11113.  https://doi.org/10.1063/1.2753723CrossRefGoogle Scholar
  17. 17.
    Lin Y, Jiang X, Kim ST et al (2017) An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 139(21):7172–7175.  https://doi.org/10.1021/jacs.7b03204CrossRefGoogle Scholar
  18. 18.
    Tan G, Zhu L, Liao X et al (2017) Rhodium/copper cocatalyzed highly trans-selective 1,2-diheteroarylation of alkynes with azoles via C-H addition/oxidative cross-coupling: a combined experimental and theoretical study. J Am Chem Soc 139(44):15724–15737.  https://doi.org/10.1021/jacs.7b07242CrossRefGoogle Scholar
  19. 19.
    Tsvelikhovsky D, Blum J (2008) Three phase microemulsion/sol–gel system for aqueous C–C coupling of hydrophobic substrates. Eur J Org Chem 2008(14):2417–2422.  https://doi.org/10.1002/ejoc.200800028CrossRefGoogle Scholar
  20. 20.
    Li H, Chi Z, Xu B et al (2011) Aggregation-induced emission enhancement compounds containing triphenylamine-anthrylenevinylene and tetraphenylethene moieties. J Mater Chem 21(11):3760.  https://doi.org/10.1039/C0JM02571BCrossRefGoogle Scholar
  21. 21.
    Collins DJ, Hobbs JJ (1967) The influence of copper halides on the course of photolysis of α,α′-disubstituted stilbenes. Aust J Chem 20(9):1905.  https://doi.org/10.1071/CH9671905CrossRefGoogle Scholar
  22. 22.
    Aldred MP, Li C, Zhu M-Q (2012) Optical properties and photo-oxidation of tetraphenylethene-based fluorophores. Chem Eur J 18(50):16037–16045.  https://doi.org/10.1002/chem.201202715CrossRefGoogle Scholar
  23. 23.
    Huang G, Ma B, Chen J et al (2012) Dendron-containing tetraphenylethylene compounds: dependence of fluorescence and photocyclization reactivity on the dendron generation. Chemistry 18(13):3886–3892.  https://doi.org/10.1002/chem.201103675CrossRefGoogle Scholar
  24. 24.
    Schultz A, Laschat S, Diele S et al (2003) Tetraphenylethene-derived columnar liquid crystals and their oxidative photocyclization. Eur J Org Chem 2003(15):2829–2839.  https://doi.org/10.1002/ejoc.200300118CrossRefGoogle Scholar
  25. 25.
    Koelsch CF (1932) Syntheses with triarylvinylmagnesium bromides. Pentaarylallyl alcohols. J Am Chem Soc 54(8):3384–3389.  https://doi.org/10.1021/ja01347a057CrossRefGoogle Scholar
  26. 26.
    Kim KS, Son SH, Joo YH et al (1987) Reactions of 1,1-diphenylethylene and its derivatives with tris(p-bromophenyl)aminium hexachloroantimonate. Chem Lett 16(11):2251–2252.  https://doi.org/10.1246/cl.1987.2251CrossRefGoogle Scholar
  27. 27.
    Pasynkiewicz S, Pietrzykowski A, Oledzka E et al (2003) Nickel mediated coupling of organic ligands. Pol J Chem 77:701–707Google Scholar
  28. 28.
    Yan X, Chen C, Xi C (2014) Zirconoarylation of alkynes through p-chloranil-promoted reductive elimination of arylzirconates. Beilstein J Org Chem 10:528–534.  https://doi.org/10.3762/bjoc.10.48CrossRefGoogle Scholar
  29. 29.
    Aves S, O’Connell K, Pike K et al (2012) Synthesis of highly substituted symmetrical 1,3-dienes via organocuprate oxidation. Synlett 2012(02):298–300.  https://doi.org/10.1055/s-0031-1290116CrossRefGoogle Scholar
  30. 30.
    Suzuki T, Higuchi H, Ohkita M et al. (2001) Dual-mode electrochromism switched by proton transfer: dynamic redox properties of bis(diarylmethylenium)-type dyes. Chem Commun (17):1574–1575.  https://doi.org/10.1039/b104742f
  31. 31.
    Liu Y, Wang L, Deng L (2015) Three-coordinate iron(II) dialkenyl compound with NHC ligation: synthesis, structure, and reactivity. Organometallics 34(17):4401–4407.  https://doi.org/10.1021/acs.organomet.5b00632CrossRefGoogle Scholar
  32. 32.
    Satoh T, Ogino S, Miura M et al (2004) Synthesis of highly substituted 1,3-butadienes by palladium-catalyzed arylation of internal alkynes. Angew Chem Int Ed 43(38):5063–5065.  https://doi.org/10.1002/anie.200460409CrossRefGoogle Scholar
  33. 33.
    Horiguchi H, Tsurugi H, Satoh T et al (2008) Palladium/phosphite or phosphate catalyzed oxidative coupling of arylboronic acids with alkynes to produce 1,4-diaryl-1,3-butadienes. Adv Synth Catal 350(3):509–514.  https://doi.org/10.1002/adsc.200700533CrossRefGoogle Scholar
  34. 34.
    Freudenberg J (2016) Neue Materialien zur Anwendung in organischen Leuchtdioden. Dissertation. Ruprecht-Karls-Universität HeidelbergGoogle Scholar
  35. 35.
    Freudenberg J, Uptmoor AC, Rominger F et al (2014) Photolability of per-arylated butadienes: en route to dihydronaphthalenes. J Org Chem 79(23):11787–11791.  https://doi.org/10.1021/jo502293qCrossRefGoogle Scholar
  36. 36.
    Sakellarios E, Kyrimis T (1924) Zur Kenntnis der Reaktion der Organomagnesiumverbindungen mit Kupfer (2)-chlorid. Ber dtsch Chem Ges A/B 57(2):322–326.  https://doi.org/10.1002/cber.19240570233CrossRefGoogle Scholar
  37. 37.
    Banal JL, White JM, Ghiggino KP et al (2014) Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle. Sci Rep 4:4635–4639.  https://doi.org/10.1038/srep04635CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Kong L, Shi J et al (2015) Aggregation-induced emission of hexaphenyl-1,3-butadiene. Chin J Chem 33(7):701–704.  https://doi.org/10.1002/cjoc.201500116CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Mao H, Kong L et al (2016) Effect of E/Z isomerization on the aggregation-induced emission features and mechanochromic performance of dialdehyde-substituted hexaphenyl-1,3-butadiene. Dyes Pigments 133:354–362.  https://doi.org/10.1016/j.dyepig.2016.06.016CrossRefGoogle Scholar
  40. 40.
    Kong L, Zhang Y, Mao H et al (2017) Dimalononitrile-containing probe based on aggregation-enhanced emission features for the multi-mode fluorescence detection of volatile amines. Faraday Discuss 196:101–111.  https://doi.org/10.1039/c6fd00178eCrossRefGoogle Scholar
  41. 41.
    Freudenberg J, Kumpf J, Schäfer V et al (2013) Water-soluble cruciforms and distyrylbenzenes: synthesis, characterization, and pH-dependent amine-sensing properties. J Org Chem 78(10):4949–4959.  https://doi.org/10.1021/jo400576yCrossRefGoogle Scholar
  42. 42.
    Kumpf J, Bunz UHF (2012) Aldehyde-appended distyrylbenzenes: amine recognition in water. Chem Eur J 18(29):8921–8924.  https://doi.org/10.1002/chem.201200930CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Kong L, Mao H et al (2017) Light/temperature-enhanced emission characteristics of malononitrile-containing hexaphenyl-1,3-butadiene derivatives: the hotter, the brighter. Mater Chem Front 115:1740.  https://doi.org/10.1039/c7qm00304hCrossRefGoogle Scholar
  44. 44.
    Zhang Y, Kong L, Pan X et al (2017) Reversible multicolor switching via simple reactions of the AIE-characteristic molecules. Dyes Pigments 139:714–719.  https://doi.org/10.1016/j.dyepig.2016.12.064CrossRefGoogle Scholar
  45. 45.
    Gardecki JA, Maroncelli M (1998) Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl Spectrosc 52(9):1179–1189.  https://doi.org/10.1366/0003702981945192CrossRefGoogle Scholar
  46. 46.
    Chen J, Xu B, Ouyang X et al (2004) Aggregation-induced emission of cis,cis-1,2,3,4-tetraphenylbutadiene from restricted intramolecular rotation. J Phys Chem A 108(37):7522–7526.  https://doi.org/10.1021/jp048475qCrossRefGoogle Scholar
  47. 47.
    Smith LI, Hoehn HH (1941) The reaction between lithium and diphenylacetylene. J Am Chem Soc 63(5):1184–1187.  https://doi.org/10.1021/ja01850a006CrossRefGoogle Scholar
  48. 48.
    Yamaguchi S, Endo T, Uchida M et al (2000) Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2, 5-diaryl-3,4-diphenylsiloles. Chemistry 6(9):1683–1692.  https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1683:AID-CHEM1683>3.0.CO;2-MCrossRefGoogle Scholar
  49. 49.
    Bhongale CJ, Chang C-W, Lee C-S et al (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109(28):13472–13482.  https://doi.org/10.1021/jp0502297CrossRefGoogle Scholar
  50. 50.
    Shi Z, Davies J, Jang S-H et al (2012) Aggregation induced emission (AIE) of trifluoromethyl substituted distyrylbenzenes. Chem Commun 48(63):7880–7882.  https://doi.org/10.1039/C2CC32380JCrossRefGoogle Scholar
  51. 51.
    He J, Xu B, Chen F et al (2009) Aggregation-induced emission in the crystals of 9,10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J Phys Chem C 113(22):9892–9899.  https://doi.org/10.1021/jp900205kCrossRefGoogle Scholar
  52. 52.
    Itami K, Ohashi Y, Yoshida J-I (2005) Triarylethene-based extended pi-systems: programmable synthesis and photophysical properties. J Org Chem 70(7):2778–2792.  https://doi.org/10.1021/jo0477401CrossRefGoogle Scholar
  53. 53.
    An B-K, Gierschner J, Park SY (2012) π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc Chem Res 45(4):544–554.  https://doi.org/10.1021/ar2001952CrossRefGoogle Scholar
  54. 54.
    Aparicio F, Cherumukkil S, Ajayaghosh A et al (2016) Color-tunable cyano-substituted divinylene arene luminogens as fluorescent π-gelators. Langmuir 32(1):284–289.  https://doi.org/10.1021/acs.langmuir.5b03771CrossRefGoogle Scholar
  55. 55.
    Chang C-W, Bhongale CJ, Lee C-S et al (2012) Relaxation dynamics and structural characterization of organic nanobelts with aggregation-induced emission. J Phys Chem C 116(28):15146–15154.  https://doi.org/10.1021/jp304117nCrossRefGoogle Scholar
  56. 56.
    Li C, Hanif M, Li X et al (2016) Effect of cyano-substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. J Mater Chem C 4(31):7478–7484.  https://doi.org/10.1039/c6tc01886fCrossRefGoogle Scholar
  57. 57.
    Li Y, Li F, Zhang H et al. (2007) Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem Commun (3):231–233.  https://doi.org/10.1039/B612732K
  58. 58.
    Xie Z, Yang B, Liu L et al (2005) Experimental and theoretical studies of 2,5-diphenyl-1,4-distyrylbenzenes with all-cis- and all-trans double bonds: chemical structure determination and optical properties. J Phys Org Chem 18(9):962–973.  https://doi.org/10.1002/poc.935CrossRefGoogle Scholar
  59. 59.
    Freudenberg J, Rominger F, Bunz UHF (2015) New aggregation-induced emitters: tetraphenyldistyrylbenzenes. Chemistry 21(47):16749–16753.  https://doi.org/10.1002/chem.201502877CrossRefGoogle Scholar
  60. 60.
    Albota M (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281(5383):1653–1656.  https://doi.org/10.1126/science.281.5383.1653CrossRefGoogle Scholar
  61. 61.
    Zucchero AJ, Tolosa J, Tolbert LM et al (2009) Bis(4′-dibutylaminostyryl)benzene: spectroscopic behavior upon protonation or methylation. Chemistry 15(47):13075–13081.  https://doi.org/10.1002/chem.200900608CrossRefGoogle Scholar
  62. 62.
    Xie Z, Yang B, Li F et al (2005) Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid-state luminescence efficiency. J Am Chem Soc 127(41):14152–14153.  https://doi.org/10.1021/ja054661dCrossRefGoogle Scholar
  63. 63.
    Horspool WM, Song P-S (1995) CRC handbook of organic photochemistry and photobiology. CRC Press, Boca RatonGoogle Scholar
  64. 64.
    Meier H (1992) The photochemistry of stilbenoid compounds and their role in materials technology. Angew Chem Int Ed Engl 31(11):1399–1420.  https://doi.org/10.1002/anie.199213993CrossRefGoogle Scholar
  65. 65.
    Ioffe IN, Quick M, Quick MT et al (2017) Tuning stilbene photochemistry by fluorination: state reordering leads to sudden polarization near the franck-condon region. J Am Chem Soc 139(42):15265–15274.  https://doi.org/10.1021/jacs.7b09611CrossRefGoogle Scholar
  66. 66.
    Saltiel J (1967) Perdeuteriostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes. J Am Chem Soc 89(4):1036–1037.  https://doi.org/10.1021/ja00980a057CrossRefGoogle Scholar
  67. 67.
    Orlandi G, Siebrand W (1975) Model for the direct photo-isomerization of stilbene. Chem Phys Lett 30(3):352–354.  https://doi.org/10.1016/0009-2614(75)80005-4CrossRefGoogle Scholar
  68. 68.
    Santoro AV, Barrett EJ, Hoyer HW (1967) Kinetics of cis-trans isomerization by differential thermal analysis. J Am Chem Soc 89(17):4545–4546.  https://doi.org/10.1021/ja00993a066CrossRefGoogle Scholar
  69. 69.
    Mallory FB, Mallory CW (1984) Photocyclizations of stilbenes and related molecules. In: Dauben WG, Boswell Jr GA, Danishefsky S et al (eds) Organic reactions, vol 30. John Wiley & Sons, Inc., New York, pp 1–456Google Scholar
  70. 70.
    Muszkat KA, Gegiou D, Fischer E (1965) The hexamethyl stilbene? hexamethyldithydrophenanthrene interconversion, an example of a reversible photocyclization. Chem Commun (London) (19):447.  https://doi.org/10.1039/c19650000447CrossRefGoogle Scholar
  71. 71.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685–1716.  https://doi.org/10.1021/cr980069dCrossRefGoogle Scholar
  72. 72.
    Irie M (2010) Photochromism of diarylethene molecules and crystals. Proc Jpn Acad Ser B 86(5):472–483.  https://doi.org/10.2183/pjab.86.472CrossRefGoogle Scholar
  73. 73.
    Muszkat KA, Castel N, Jakob A et al (1991) Photophysics and photochemistry of ring-fluorinated stilbenes. J Photochem Photobiol A Chem 56(2–3):219–226.  https://doi.org/10.1016/1010-6030(91)80022-ACrossRefGoogle Scholar
  74. 74.
    Ito Y, Uozu Y, Matsuura T (1987) Trans-cis photoisomerization of para-styrylstilbenes. Tetrahedron Lett 28(30):3493–3496.  https://doi.org/10.1016/S0040-4039(00)96335-4CrossRefGoogle Scholar
  75. 75.
    Sandros K, Sundahl M, Wennerstroem O et al (1990) Cis-trans photoisomerization of a p-styrylstilbene, a one- and twofold adiabatic process. J Am Chem Soc 112(8):3082–3086.  https://doi.org/10.1021/ja00164a031CrossRefGoogle Scholar
  76. 76.
    Fengqiang Z, Motoyoshiya J, Nakamura J et al (2006) Photochemical behavior of some p-styrylstilbenes and related compounds: spectral properties and photoisomerization in solution and in solid state. Photochem Photobiol 82(6):1645–1650.  https://doi.org/10.1111/j.1751-1097.2006.tb09825.xCrossRefGoogle Scholar
  77. 77.
    Laarhoven WH, Cuppen TJHM, Nivard RJF (1970) Photodehydrocyclizations in stilbene-like compounds—II. Tetrahedron 26(4):1069–1083.  https://doi.org/10.1016/S0040-4020(01)98783-6CrossRefGoogle Scholar
  78. 78.
    Sato T, Shimada S, Hata K (1971) A new route to polycondensed aromatics: photolytic formation of triphenylene and dibenzo[ fg , op ]naphthacene ring systems. Bull Chem Soc Jpn 44(9):2484–2490.  https://doi.org/10.1246/bcsj.44.2484CrossRefGoogle Scholar
  79. 79.
    Sato T, Goto Y, Hata K (1967) A new synthesis of triphenylene by the photochemical aryl coupling reaction of o -terphenyl. BCSJ 40(8):1994–1995.  https://doi.org/10.1246/bcsj.40.1994CrossRefGoogle Scholar
  80. 80.
    Koussini R, Lapouyade R, Fornier de Violet P (1978) Intramolecular photocyclization of 2-vinylbiphenyl-like compounds. 1. A quantitative study of the cyclization under steady-state illumination. J Am Chem Soc 100(21):6679–6683.  https://doi.org/10.1021/ja00489a020CrossRefGoogle Scholar
  81. 81.
    Oda K, Hiroto S, Sakamaki D et al (2016) Fully-substituted 1,3-butadienes as π-conjugated linkers between pyrenes. Chem Lett 45(4):403–405.  https://doi.org/10.1246/cl.151181CrossRefGoogle Scholar
  82. 82.
    Shah S, Eichler BE, Smith RC et al (2003) Synthesis and solid state structures of increasingly sterically crowded 1,4-diiodo-2,3,5,6-tetraarylbenzenes: a new series of bulky benzenes and aryls. New J Chem 27(2):442–445.  https://doi.org/10.1039/b210577bCrossRefGoogle Scholar
  83. 83.
    Freudenberg J, Rominger F, Bunz UHF (2016) Suppression of photocyclization: stabilization of an aggregation-induced tetraaryldistyrylbenzene emitter. Chem Eur J 22(26):8740–8744.  https://doi.org/10.1002/chem.201601069CrossRefGoogle Scholar
  84. 84.
    Ehlers P, Hakobyan A, Neubauer A et al (2013) Tetraalkynylated and tetraalkenylated benzenes and pyridines: synthesis and photophysical properties. Adv Synth Catal 355(9):1849–1858.  https://doi.org/10.1002/adsc.201300201CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.InnovationLabHeidelbergGermany
  3. 3.Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergHeidelbergGermany

Personalised recommendations