Markov Approximations and Statistical Properties of Billiards

  • Domokos Szász
Part of the The Abel Prize book series (AP)


Markov partitions designed by Sinai (Funct Anal Appl 2:245–253, 1968) and Bowen (Am J Math 92:725–747, 1970) proved to be an efficient tool for describing statistical properties of uniformly hyperbolic systems. For hyperbolic systems with singularities, in particular for hyperbolic billiards the construction of a Markov partition by Bunimovich and Sinai (Commun Math Phys 78:247–280, 1980) was a delicate and hard task. Therefore later more and more flexible and simple variants of Markov partitions appeared: Markov sieves (Bunimovich–Chernov–Sinai, Russ Math Surv 45(3):105–152, 1990), Markov towers (Young, Ann Math (2) 147(3):585–650, 1998), standard pairs (Dolgopyat). This remarkable evolution of Sinai’s original idea is surveyed in this paper.



The author is highly indebted to Yasha Pesin for his careful reading of the manuscript and many useful remarks and, moreover, to Péter Bálint and Thomas Gilbert for kindly helping him out with the figures and to Ferenc Wettl for technical help with them. This research was supported by Hungarian National Foundation for Scientific Research grant No. K 104745 and OMAA-92öu6 project.


  1. 1.
    R.L. Adler and B. Weiss. Entropy, a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci. U.S.A., 57:1573–1576, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    V. Baladi, M.F. Demers, and C. Liverani. Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math., 211(1):39–177, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    P. Bálint, N. Chernov, and D. Dolgopyat. Limit theorems for dispersing billiards with cusps. Comm. Math. Phys., 308(2):479–510, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P. Bálint, N. Chernov, D. Szász, and I.P. Tóth. Geometry of multi-dimensional dispersing billiards. Astérisque, (286):119–150, 2003.MathSciNetzbMATHGoogle Scholar
  5. 5.
    P. Bálint and S. Gouëzel. Limit theorems in the stadium billiard. Comm. Math. Phys., 263(2):461–512, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Bálint, T. Gilbert, P. Nándori, D. Szász, Domokos, and I.P. Tóth. On the limiting Markov process of energy exchanges in a rarely interacting ball-piston gas. J. Stat. Phys. 166(3–4), 903–925 (2017).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    P. Bálint, P. Nándori, D. Szász, and I.P. Tóth. Equidistribution for standard pairs in planar dispersing billiard flows. Ann. Henri Poincaré 19(4), 979–1042 (2018).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    P. Bálint and I.P. Tóth. Exponential decay of correlations in multi-dimensional dispersing billiards. Ann. Henri Poincaré, 9(7):1309–1369, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    K.R. Berg. On the conjugacy problem for K-systems. PhD thesis, University of Minnesota, 1967.Google Scholar
  10. 10.
    G.D. Birkhoff. On the periodic motions of dynamical systems. Acta Math., 50(1):359–379, 1927.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    G.D. Birkhoff. Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA, 17:656–660, 1931.zbMATHCrossRefGoogle Scholar
  12. 12.
    P. M. Bleher. Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J. Statist. Phys. 66(1–2), 315–373 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R. Bowen. Markov partitions for Axiom A diffeomorphisms. Amer. J. Math., 92:725–747, 1970.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008.Google Scholar
  15. 15.
    L. Bunimovich. Billiards. In H. Holden, R. Piene, editors, The Abel Prize 2013–2017, pages 1–11. Springer, 2019.Google Scholar
  16. 16.
    L.A. Bunimovich and Ya.G. Sinai. Markov partitions for dispersed billiards. Commun. Math. Phys., 78:247–280, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L.A. Bunimovich and Ya.G. Sinai. Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys., 78:479–497, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    L.A. Bunimovich and Ya.G. Sinai. Erratum [16]. Comm. Math. Phys., 107(2):357–358, 1986.Google Scholar
  19. 19.
    L.A. Bunimovich, Ya.G. Sinai, and N.I. Chernov. Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv., 46(4), 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    L.A. Bunimovich, Ya.G. Sinai, and N.I. Chernov. Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv., 45(3):105–152, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    N. Chernov. Decay of correlations and dispersing billiards. J. Statist. Phys., 94(3–4):513–556, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    N. Chernov and D. Dolgopyat. Brownian Brownian motion. I. Mem. Amer. Math. Soc., 198(927):viii+193, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    N. Chernov and D. Dolgopyat. The Galton board: limit theorems and recurrence. J. Amer. Math. Soc., 22(3):821–858, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    N. Chernov and R. Markarian. Anosov maps with rectangular holes. Nonergodic cases. Bol. Soc. Brasil. Mat. (N.S.), 28(2):315–342, 1997.Google Scholar
  25. 25.
    N. Chernov and R. Markarian. Chaotic Billiards, volume 127 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006.Google Scholar
  26. 26.
    N. Chernov, R. Markarian, and S. Troubetzkoy. Invariant measures for Anosov maps with small holes. Ergodic Theory Dynam. Systems, 20(4):1007–1044, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    N. Chernov and L.S. Young. Decay of correlations for Lorentz gases and hard balls. In Hard Ball Systems and the Lorentz Gas, volume 101 of Encyclopaedia Math. Sci., pages 89–120. Springer, Berlin, 2000.Google Scholar
  28. 28.
    N. Chernov, H.-K. Zhang, and P. Zhang. Electrical current in Sinai billiards under general small forces. J. Stat. Phys., 153(6):1065–1083, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    N.I. Chernov. Sinai billiards under small external forces. Ann. Henri Poincaré, 2(2):197–236, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    N.I. Chernov and D.I. Dolgopyat. Anomalous current in periodic Lorentz gases with infinite horizon. Russ. Math. Surv., 64(4):651–699, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    N.I. Chernov, G.L. Eyink, J.L. Lebowitz, and Ya.G. Sinai. Derivation of ohm’s law in a deterministic mechanical model. Phys. Rev. Lett., 70:2209–2212, Apr 1993.CrossRefGoogle Scholar
  32. 32.
    N.I. Chernov, G.L. Eyink, J.L. Lebowitz, and Ya.G. Sinai. Steady-state electrical conduction in the periodic Lorentz gas. Comm. Math. Phys., 154(3):569–601, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    V. Climenhaga, D. Dolgopyat, and Y. Pesin. Non-stationary non-uniform hyperbolicity: SRB measures for dissipative maps. Comm. Math. Phys., 346(2):553–602, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    J.-P. Conze. Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Ergodic Theory Dynam. Systems, 19(5):1233–1245, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai. Ergodic Theory, volume 245 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 1982.Google Scholar
  36. 36.
    M. Demers, P. Wright, and L.-S. Young. Escape rates and physically relevant measures for billiards with small holes. Comm. Math. Phys., 294(2):353–388, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    M.F. Demers, P. Wright, and L.-S. Young. Entropy, Lyapunov exponents and escape rates in open systems. Ergodic Theory Dynam. Systems, 32(4):1270–1301, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    C.P. Dettmann. Diffusion in the Lorentz gas. Commun. Theor. Phys., 62(4):521–540, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    D. Dolgopyat and C. Liverani. Energy transfer in a fast-slow Hamiltonian system. Comm. Math. Phys., 308(1):201–225, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    D. Dolgopyat and P. Nándori. Nonequilibrium density profiles in Lorentz tubes with thermostated boundaries. Comm. Pure Appl. Math., 69(4):649–692, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    D. Dolgopyat, D. Szász, and T. Varjú. Recurrence properties of planar Lorentz process. Duke Math. J., 142(2):241–281, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    D. Dolgopyat, D. Szász, and T. Varjú. Limit theorems for locally perturbed planar Lorentz processes. Duke Math. J., 148(3):459–499, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    P. Ehrenfest and T. Ehrenfest. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912)., 1912.Google Scholar
  44. 44.
    P. Gaspard and T. Gilbert. Heat conduction and fourier’s law by consecutive local mixing and thermalization. Phys. Rev. Lett., 101:020601, Jul 2008.Google Scholar
  45. 45.
    B. Hasselblatt and A. Katok, editors. Handbook of Dynamical Systems. Volume 1A. Amsterdam: North-Holland, 2002.zbMATHGoogle Scholar
  46. 46.
    A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995.Google Scholar
  47. 47.
    D. König and A. Szücs. Mouvement d’un point abandonné à l’intérieur d’un cube. Rend. Circ. Mat. Palermo, 36:79–90, 1913.zbMATHCrossRefGoogle Scholar
  48. 48.
    N.S. Krylov. Works on the Foundations of Statistical Physics. Princeton University Press, Princeton, NJ, 1979.Google Scholar
  49. 49.
    Y.-E. Lévy. A note on Sinai and Bunimovich’s Markov partition for billiards. J. Statist. Phys., 45(1–2):63–68, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    H.A. Lorentz. Le mouvement des électrons dans les métaux. Arch. Néerl. 10 336–371 (1905). In Collected Paper. Vol. III, pages 180ff.Google Scholar
  51. 51.
    E. Nelson. Dynamical Theories of Brownian Motion. Princeton University Press, Princeton, N.J., 1967.zbMATHGoogle Scholar
  52. 52.
    F. Pène and B. Saussol. Back to balls in billiards. Comm. Math. Phys., 293(3):837–866, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Y. Pesin. Sinai’s work on Markov partitions and SRB measures. In H. Holden, R. Piene, editors, The Abel Prize 2013–2017, pages 257–285. Springer, 2019.Google Scholar
  54. 54.
    L. Rey-Bellet and L.-S. Young. Large deviations in non-uniformly hyperbolic dynamical systems. Ergodic Theory Dynam. Systems, 28(2):587–612, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    K. Schmidt. On joint recurrence. C. R. Acad. Sci. Paris Sér. I Math., 327(9):837–842, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    N. Simányi. Further developments of Sinai’s ideas: the Boltzmann–Sinai hypothesis. In H. Holden, R. Piene, editors, The Abel Prize 2013–2017, pages 1–12. Springer, 2019.Google Scholar
  57. 57.
    Ya.G. Sinai. Construction of Markov partitions. Funct. Anal. Appl., 2:245–253, 1968.zbMATHCrossRefGoogle Scholar
  58. 58.
    Ya.G. Sinai. Markov partitions and C-diffeomorphisms. Funct. Anal. Appl., 2:61–82, 1968.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Ya.G. Sinai. Dynamical systems with elastic reflections. Russ. Math. Surv., 25(2):137–189, 1970.zbMATHCrossRefGoogle Scholar
  60. 60.
    Ya.G. Sinai. Gibbs measures in ergodic theory. Russ. Math. Surv., 27(4):21–69, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    D. Szász. John von Neumann, the mathematician. Math. Intelligencer, 33(2):42–51, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    D. Szász. Mathematical billiards and chaos. Eur. Math. Soc. Newsl., (93):22–29, 2014.MathSciNetzbMATHGoogle Scholar
  63. 63.
    D. Szász and T. Varjú. Local limit theorem for the Lorentz process and its recurrence in the plane. Ergodic Theory Dynam. Systems, 24(1):257–278, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    D. Szász and T. Varjú. Limit laws and recurrence for the planar Lorentz process with infinite horizon. J. Stat. Phys., 129(1):59–80, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    J. von Neumann. Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA, 18:70–82, 1932.zbMATHCrossRefGoogle Scholar
  66. 66.
    L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2), 147(3):585–650, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    L.-S. Young. Recurrence times and rates of mixing. Israel J. Math., 110:153–188, 1999.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Domokos Szász
    • 1
  1. 1.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations