Complex Intracranial Aneurysms: Strategies for Surgical Trapping and Cerebral Revascularization

  • Ralph RahmeEmail author
  • Marjan Alimi
  • David J. Langer


Intracranial aneurysms that are neither clippable nor coilable often require a deconstructive procedure to eliminate the risk of hemorrhage. In that setting, cerebral revascularization may become necessary to replace blood flow after parent artery sacrifice and, in the case of ruptured aneurysms, to prevent delayed cerebral ischemia. In this chapter, we guide the reader through the process of surgical decision-making in these challenging cases, as we elaborate on the management strategies and some of the technical nuances of microsurgical trapping and bypass.


Bypass surgery Cerebral blood flow Cerebral revascularization Delayed cerebral ischemia Extracranial-intracranial bypass Intracranial aneurysm Intracranial-intracranial bypass Microsurgery Subarachnoid hemorrhage Trapping 


  1. 1.
    Kivipelto L, Niemelä M, Meling T, Lehecka M, Lehto H, Hernesniemi J. Bypass surgery for complex middle cerebral artery aneurysms: impact of the exact location in the MCA tree. J Neurosurg. 2014;120(2):398–408.CrossRefGoogle Scholar
  2. 2.
    Esposito G, Fierstra J, Regli L. Distal outflow occlusion with bypass revascularization: last resort measure in managing complex MCA and PICA aneurysms. Acta Neurochir. 2016;158(8):1523–31.CrossRefGoogle Scholar
  3. 3.
    Tayebi Meybodi A, Huang W, Benet A, Kola O, Lawton MT. Bypass surgery for complex middle cerebral artery aneurysms: an algorithmic approach to revascularization. J Neurosurg. 2017;127(3):463–79.CrossRefGoogle Scholar
  4. 4.
    Rodríguez-Hernández A, Sughrue ME, Akhavan S, Habdank-Kolaczkowski J, Lawton MT. Current management of middle cerebral artery aneurysms: surgical results with a “clip first” policy. Neurosurgery. 2013;72(3):415–27.CrossRefGoogle Scholar
  5. 5.
    Abla AA, Lawton MT. Anterior cerebral artery bypass for complex aneurysms: an experience with intracranial-intracranial reconstruction and review of bypass options. J Neurosurg. 2014;120(6):1364–77.CrossRefGoogle Scholar
  6. 6.
    Abla AA, McDougall CM, Breshears JD, Lawton MT. Intracranial-to-intracranial bypass for posterior inferior cerebellar artery aneurysms: options, technical challenges, and results in 35 patients. J Neurosurg. 2016;124(5):1275–86.CrossRefGoogle Scholar
  7. 7.
    Shimizu H, Matsumoto Y, Tominaga T. Non-saccular aneurysms of the supraclinoid internal carotid artery trunk causing subarachnoid hemorrhage: acute surgical treatments and review of literatures. Neurosurg Rev. 2010;33(2):205–16.CrossRefGoogle Scholar
  8. 8.
    Kazumata K, Nakayama N, Nakamura T, Kamiyama H, Terasaka S, Houkin K. Changing treatment strategy from clipping to radial artery graft bypass and parent artery sacrifice in patients with ruptured blister-like internal carotid artery aneurysms. Neurosurgery. 2014;10(Suppl 1):66–73.PubMedGoogle Scholar
  9. 9.
    Owen CM, Montemurro N, Lawton MT. Blister aneurysms of the internal carotid artery: microsurgical results and management strategy. Neurosurgery. 2017;80(2):235–47.Google Scholar
  10. 10.
    Nussbaum ES. Surgical distal outflow occlusion for the treatment of complex intracranial aneurysms: experience with 18 cases. Neurosurgery. 2015;11(Suppl 2):8–16.PubMedGoogle Scholar
  11. 11.
    Hara T, Arai S, Goto Y, Takizawa T, Uchida T. Bypass surgeries in the treatment of cerebral aneurysms. Acta Neurochir Suppl. 2016;123:57–64.CrossRefGoogle Scholar
  12. 12.
    Langer DJ, Lefton DR, Ostergren L, Brockington CD, Song J, Niimi Y, Bhargava P, Berenstein A. Hemispheric revascularization in the setting of carotid occlusion and subclavian steal: a diagnostic and management role for quantitative magnetic resonance angiography? Neurosurgery. 2006;58(3):528–33.CrossRefGoogle Scholar
  13. 13.
    Amin-Hanjani S, Shin JH, Zhao M, Du X, Charbel FT. Evaluation of extracranial-intracranial bypass using quantitative magnetic resonance angiography. J Neurosurg. 2007;106(2):291–8.CrossRefGoogle Scholar
  14. 14.
    Starke RM, Chwajol M, Lefton D, Sen C, Berenstein A, Langer DJ. Occipital artery-to-posterior inferior cerebellar artery bypass for treatment of bilateral vertebral artery occlusion: the role of quantitative magnetic resonance angiography noninvasive optimal vessel analysis: technical case report. Neurosurgery. 2009;64(4):E779–81.CrossRefGoogle Scholar
  15. 15.
    Fujiwara S, Fujii K, Fukui M. De novo aneurysm formation and aneurysm growth following therapeutic carotid occlusion for intracranial internal carotid artery (ICA) aneurysms. Acta Neurochir (Wien). 1993;120(1–2):20–5.CrossRefGoogle Scholar
  16. 16.
    Inui Y, Oiwa Y, Terada T, Nakakita K, Kamei I, Hayashi S. De novo vertebral artery dissecting aneurysm after contralateral vertebral artery occlusion – two case reports. Neurol Med Chir (Tokyo). 2006;46(1):32–6.CrossRefGoogle Scholar
  17. 17.
    Arambepola PK, McEvoy SD, Bulsara KR. De novo aneurysm formation after carotid artery occlusion for cerebral aneurysms. Skull Base. 2010;20(6):405–8.CrossRefGoogle Scholar
  18. 18.
    Tutino VM, Mandelbaum M, Choi H, Pope LC, Siddiqui A, Kolega J, Meng H. Aneurysmal remodeling in the circle of Willis after carotid occlusion in an experimental model. J Cereb Blood Flow Metab. 2014;34(3):415–24.CrossRefGoogle Scholar
  19. 19.
    Meling TR, Sorteberg A, Bakke SJ, Slettebø H, Hernesniemi J, Sorteberg W. Blood blister-like aneurysms of the internal carotid artery trunk causing subarachnoid hemorrhage: treatment and outcome. J Neurosurg. 2008;108(4):662–71.CrossRefGoogle Scholar
  20. 20.
    Endo H, Fujimura M, Shimizu H, Inoue T, Sato K, Niizuma K, Tominaga T. Cerebral blood flow after acute bypass with parent artery trapping in patients with ruptured Supraclinoid internal carotid artery aneurysms. J Stroke Cerebrovasc Dis. 2015;24(10):2358–68.CrossRefGoogle Scholar
  21. 21.
    Korja M, Sen C, Langer D. Operative nuances of side-to-side in situ posterior inferior cerebellar artery-posterior inferior cerebellar artery bypass procedure. Neurosurgery. 2010;67(2 Suppl Operative):471–7.PubMedGoogle Scholar
  22. 22.
    Langer DJ, Van Der Zwan A, Vajkoczy P, Kivipelto L, Van Doormaal TP, Tulleken CA. Excimer laser-assisted nonocclusive anastomosis. An emerging technology for use in the creation of intracranial-intracranial and extracranial-intracranial cerebral bypass. Neurosurg Focus. 2008;24(2):E6.CrossRefGoogle Scholar
  23. 23.
    Burkhardt JK, Esposito G, Fierstra J, Bozinov O, Regli L. Emergency non-occlusive high capacity bypass surgery for ruptured Giant internal carotid artery aneurysms. Acta Neurochir Suppl. 2016;123:77–81.CrossRefGoogle Scholar
  24. 24.
    Amin-Hanjani S, Du X, Mlinarevich N, Meglio G, Zhao M, Charbel FT. The cut flow index: an intraoperative predictor of the success of extracranial-intracranial bypass for occlusive cerebrovascular disease. Neurosurgery. 2005;56(1 Suppl):75–85.PubMedGoogle Scholar
  25. 25.
    Amin-Hanjani S, Charbel FT. Flow-assisted surgical technique in cerebrovascular surgery. Surg Neurol. 2007;68(Suppl 1):S4–11.CrossRefGoogle Scholar
  26. 26.
    Baaj AA, Agazzi S, van Loveren H. Graft selection in cerebral revascularization. Neurosurg Focus. 2009;26(5):E18.CrossRefGoogle Scholar
  27. 27.
    Lee M, Guzman R, Bell-Stephens T, Steinberg GK. Intraoperative blood flow analysis of direct revascularization procedures in patients with moyamoya disease. J Cereb Blood Flow Metab. 2011;31(1):262–74.CrossRefGoogle Scholar
  28. 28.
    Duckworth EA, Rao VY, Patel AJ. Double-barrel bypass for cerebral ischemia: technique, rationale, and preliminary experience with 10 consecutive cases. Neurosurgery. 2013;73(1 Suppl Operative):ons30–8.PubMedGoogle Scholar
  29. 29.
    Kaku Y, Takei H, Miyai M, Yamashita K, Kokuzawa J. Surgical treatment of complex cerebral aneurysms using interposition short vein graft. Acta Neurochir Suppl. 2016;123:65–71.CrossRefGoogle Scholar
  30. 30.
    Nossek E, Costantino PD, Eisenberg M, Dehdashti AR, Setton A, Chalif DJ, Ortiz RA, Langer DJ. Internal maxillary artery-middle cerebral artery bypass: infratemporal approach for subcranial-intracranial (SC-IC) bypass. Neurosurgery. 2014;75:87–95.CrossRefGoogle Scholar
  31. 31.
    Nossek E, Costantino PD, Chalif DJ, Ortiz RA, Dehdashti AR, Langer DJ. Forearm cephalic vein graft for short, “middle”-flow, internal maxillary artery to middle cerebral artery bypass. Operative Neurosurgery. 2016;12:99–105.PubMedGoogle Scholar
  32. 32.
    Yağmurlu K, Kalani MYS, Martirosyan NL, Safavi-Abbasi S, Belykh E, Laarakker AS, Nakaji P, Zabramski JM, Preul MC, Spetzler RF. Maxillary artery to middle cerebral artery bypass: a novel technique for exposure of the maxillary artery. World Neurosurg. 2017;100:540–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, Lenox Hill HospitalHofstra Northwell School of MedicineNew YorkUSA
  2. 2.Division of NeurosurgerySBH Health SystemBronxUSA

Personalised recommendations