Advertisement

Improved Signature Schemes for Secure Multi-party Computation with Certified Inputs

  • Marina Blanton
  • Myoungin Jeong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11099)

Abstract

The motivation for this work comes from the need to strengthen security of secure multi-party protocols with the ability to guarantee that the participants provide their truthful inputs in the computation. This is outside the traditional security models even in the presence of malicious participants, but input manipulation can often lead to privacy and result correctness violations. Thus, in this work we treat the problem of combining secure multi-party computation (SMC) techniques based on secret sharing with signatures to enforce input correctness in the form of certification. We modify two currently available signature schemes to achieve private verification and efficiency of batch verification and show how to integrate them with two prominent SMC protocols.

Keywords

Signature schemes with privacy Batch verification Secure multiparty computation Certified inputs 

Notes

Acknowledgments

We thank anonymous reviewers for their valuable feedback. This work was supported in part by grant 1319090 from the National Science Foundation (NSF). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NSF.

References

  1. 1.
    Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054130CrossRefGoogle Scholar
  2. 2.
    Blanton, M., Bayatbabolghani, F.: Efficient server-aided secure two-party function evaluation with applications to genomic computation. In: PoPET, vol. 4, pp. 1–22 (2016)Google Scholar
  3. 3.
    Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs board evaluated a tax fraud detection system based on secure multi-party computation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_14CrossRefGoogle Scholar
  4. 4.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03549-4_20CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_14CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36413-7_20CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_4CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Sommer, D., Zimmermann, R.: A general certification framework with applications to privacy-enhancing certificate infrastructures. In: Fischer-Hübner, S., Rannenberg, K., Yngström, L., Lindskog, S. (eds.) SEC 2006. IIFIP, vol. 201, pp. 25–37. Springer, Boston, MA (2006).  https://doi.org/10.1007/0-387-33406-8_3CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical report 260, Department of Computer Science, ETH Zurich (1997)Google Scholar
  10. 10.
    Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03549-4_7CrossRefGoogle Scholar
  11. 11.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_7CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40203-6_1CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_32CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38CrossRefGoogle Scholar
  15. 15.
    De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14577-3_13CrossRefGoogle Scholar
  16. 16.
    Dent, A.W., Fischlin, M., Manulis, M., Stam, M., Schröder, D.: Confidential signatures and deterministic signcryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 462–479. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_27CrossRefGoogle Scholar
  17. 17.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signature batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 309–324. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00862-7_21CrossRefGoogle Scholar
  19. 19.
    Fleischhacker, N., Günther, F., Kiefer, F., Manulis, M., Poettering, B.: Pseudorandom signatures. In: ASIACCS, pp. 107–118 (2013)Google Scholar
  20. 20.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  21. 21.
    Guo, N., Gao, T., Wang, J.: Privacy-preserving and efficient attributes proof based on selective aggregate CL-signature scheme. Int. J. Comput. Math. 93(2), 273–288 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: ACM Symposium on Theory of Computing (STOC), pp. 623–632 (2004)Google Scholar
  23. 23.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman Hall/CRC, Boca Raton (2014)MATHGoogle Scholar
  24. 24.
    Katz, J., Malozemoff, A.J., Wang, X.: Efficiently enforcing input validity in secure two-party computation. IACR Cryptology ePrint Archive Report 2016/184 (2016)Google Scholar
  25. 25.
    Kreuter, B.: Secure multiparty computation at Google. Real World Crypto (2017). https://www.youtube.com/watch?v=ee7oRsDnNNc
  26. 26.
    Lee, K., Lee, D.H., Yung, M.: Aggregating CL-signatures revisited: extended functionality and better efficiency. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 171–188. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_14CrossRefGoogle Scholar
  27. 27.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46513-8_14CrossRefGoogle Scholar
  28. 28.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  29. 29.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_33CrossRefGoogle Scholar
  30. 30.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRefGoogle Scholar
  31. 31.
    Wallrabenstein, J.R., Clifton, C.: Equilibrium concepts for rational multiparty computation. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.) GameSec 2013. LNCS, vol. 8252, pp. 226–245. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02786-9_14CrossRefMATHGoogle Scholar
  32. 32.
    Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous signature schemes. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 347–363. Springer, Heidelberg (2006).  https://doi.org/10.1007/11745853_23CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Blanton, M., Bayatbabolghani, F.: Enforcing input correctness via certification in garbled circuit evaluation. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 552–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66399-9_30CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity at Buffalo (SUNY)BuffaloUSA
  2. 2.Department of MathematicsUniversity at Buffalo (SUNY)BuffaloUSA

Personalised recommendations