Advertisement

An Overview of Nuclear Imaging

  • Pat ZanzonicoEmail author
Chapter

Abstract

Radionuclide imaging involves the use of unsealed sources of radioactivity which are administered in the form of radiopharmaceuticals. The ionizing radiations which accompany the decay of the administered radioactivity can be detected, measured, and imaged with instruments such as gamma cameras and single-photon emission tomography (SPECT) and positron-emission tomography (PET) scanners. The distinctive and important advantages of radionuclide-based molecular imaging—high detection sensitivity and “image-ability” of non-perturbing doses of radiopharmaceuticals, quantitation, and a vast array of radiopharmaceuticals—ensure that this modality (particularly in combination with computed tomography and magnetic resonance imaging) will remain invaluable in clinical practice and in clinical and preclinical research. This chapter reviews the design and operating principles as well as the capabilities and limitations of instruments used clinically and preclinically for in vivo radionuclide imaging.

Keywords

Gamma cameras Hybrid scanners Molecular imaging Nuclear medicine Positron-emission tomography (PET) Radiopharmaceuticals Single-photon emission computed tomography (SPECT) 

References

  1. 1.
    Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007; 48:18N, 21N.Google Scholar
  2. 2.
    Zanzonico P. Principles of nuclear medicine imaging. Planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177(4):349–64.PubMedGoogle Scholar
  3. 3.
    Zanzonico P, Heller S. Physics, instrumentation, and radiation protection. In: Biersack HJ, Freeman LM, editors. Clinical nuclear medicine. Berlin/ Heidelberg: Springer-Verlag; 2007. p. 1–33.Google Scholar
  4. 4.
    Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.PubMedGoogle Scholar
  5. 5.
    Otte N. The silicon photomultiplier – a new device for high energy physics, astroparticle physics, industrial and medical applications (0018). SNIC Symposium, 2006, April 3–6. Palo Alto: Stanford University; 2006. www.slac.stanford.edu/econf/C0604032/papers/0018.pdf Accessed 24 May 2018.
  6. 6.
    Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003;30(11):1574–97.PubMedGoogle Scholar
  7. 7.
    Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med. 2004;34(2):87–111.PubMedGoogle Scholar
  8. 8.
    Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30(1):33–48.PubMedGoogle Scholar
  9. 9.
    Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41(3):166–81.PubMedGoogle Scholar
  10. 10.
    Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49(7):1114–31.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Saha GS. Physics and radiobiology of nuclear medicine. New York: Springer-Verlag; 1993. p. 107–23.Google Scholar
  12. 12.
    Zanzonico PB. Technical requirements for SPECT: equipment and quality control. In: Kramer EL, Sanger JJ, editors. Clinical applications in SPECT. New York: Raven Press; 1995. p. 7–41.Google Scholar
  13. 13.
    Frey EC, Humm JL, Ljungberg M. Accuracy and precision of radioactivity quantification in nuclear medicine images. Semin Nucl Med. 2012;42(3):208–18.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsui BM, Zhao X, Frey EC, McCartney WH. Quantitative single-photon emission computed tomography: basics and clinical considerations. Semin Nucl Med. 1994;24(1):38–65.PubMedGoogle Scholar
  15. 15.
    Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, Ljungberg M. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310–25.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Townsend DW, Bendriem B. Introduction to 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET, B. Dordrecht: Kluwer Academic Publishers; 1998. p. 1–10.Google Scholar
  17. 17.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia: Saunders; 2003.Google Scholar
  18. 18.
    Lewellen TK. Time-of-flight PET. Semin Nucl Med. 1998;28(3):268–75.PubMedGoogle Scholar
  19. 19.
    Moses W. Recent advances and future advances in time-of-flight pet. Nucl Instrum Methods Phys Res A. 2007;580(2):919–24.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49(3):462–70.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44(3):781–99.PubMedGoogle Scholar
  22. 22.
    Derenzo SE. Mathematical removal of positron range blurring in high-resolution tomography. IEEE Trans Nucl Sci. 1986;33(1):565–9.Google Scholar
  23. 23.
    Berko S, Hereford FL. Experimental studies of positron interactions in solids and liquids. Rev Mod Phys. 1956;28(3):299–307.Google Scholar
  24. 24.
    Yang Y, Wu Y, Qi J, St James S, Du H, Dokhale PA, et al. A prototype PET scanner with DOI-encoding detectors. J Nucl Med. 2008;49(7):1132–40.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Mosset JB, Devroede O, Krieguer M, Rey M, Vieira JM Jung JH, et al. Development of an optimised LSO/LuYAP phoswich detector head for the ClearPET camera. IEEE Nucl Sci Sym Conf Rec. 2004:2439–2443.Google Scholar
  26. 26.
    Greer K, Jaszczak RJ, Harris C, Coleman RE. Quality control in SPECT. J Nucl Med Technol. 1985;13(2):76–85.Google Scholar
  27. 27.
    Harkness BA, Rogers WL, Clinthorne NH, Keyes JW Jr. SPECT: Quality control procedures and artifact identification. J Nucl Med Technol. 1983;11(2):55–60.Google Scholar
  28. 28.
    Meikle SR, Badawi RD. Quantitative techniques PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron emission tomography: basic sciences. London: Springer-Verlag; 2005. p. 93–126.Google Scholar
  29. 29.
    Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET, B. Dordrecht: Kluwer Academic Publishers; 1998. p. 55–109.Google Scholar
  30. 30.
    Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon-emission CT. IEEE Trans Med Imaging. 1991;10(3):408–2.PubMedGoogle Scholar
  31. 31.
    Zanzonico PB, Nehmeh SA. Introduction to clinical and laboratory (small-animal) image registration and fusion. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1580–3.PubMedGoogle Scholar
  32. 32.
    Beyer T, Townsend DW, Blodgett TM. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med. 2002;46(1):24–34.PubMedGoogle Scholar
  33. 33.
    Israel O, Goldsmith SJ, editors. Hybrid SPECT/CT: imaging in clinical practice. Boca Raton: CRC Press/Taylor & Francis; 2006.Google Scholar
  34. 34.
    Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol. 2002;75 Spec No:S24–30.Google Scholar
  35. 35.
    Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33(3):193–204.PubMedGoogle Scholar
  36. 36.
    Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.PubMedGoogle Scholar
  37. 37.
    Pichler BJ, Judenhofer MS, Wehrl HF. PET/MRI hybrid imaging: devices and initial results. Eur Radiol. 2008;18(6):1077–86.PubMedGoogle Scholar
  38. 38.
    Pichler BJ, Kolb A, Nägele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.PubMedGoogle Scholar
  39. 39.
    Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Beyer T, Freudenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insights Imaging. 2011;2(3):235–46.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Graham MC, Pentlow KS, Mawlawi O, Finn RD, Daghighian F, Larson SM. An investigation of the physical characteristics of 66Ga as an isotope for PET imaging and quantification. Med Phys. 1997;24(2):317–26.PubMedGoogle Scholar
  42. 42.
    Pentlow KS, Finn RD, Larson SM, Erdi YE, Beattie BJ, Humm JL. Quantitative imaging of yttrium-86 with PET: the occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging. 2000;3(3):85–90.PubMedGoogle Scholar
  43. 43.
    Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(4):535–53.PubMedGoogle Scholar
  44. 44.
    Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV. Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol. 2010;5(1):42–7.PubMedGoogle Scholar
  45. 45.
    Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Amis ES Jr, Butler PF, Applegate KE, Birnbaum SB, Brateman LF, Hevezi JM, et al. American College of Radiology. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007;4(5):272–84.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations