Advertisement

Methods for the Production of Radionuclides for Medicine

  • Lauren L. Radford
  • Suzanne E. LapiEmail author
Chapter

Abstract

Nuclear reactions involve the interaction of particles or photons with the nuclei of target atoms, resulting in the production of radioactive atoms that can be used in medicine for diagnostic or therapeutic purposes. The guiding principles and methods of radionuclide production are explored in this chapter, with a focus on reactor- and accelerator-based production. With few exceptions, nuclear reactors are used to produce neutron-rich nuclides that are mainly of interest for therapeutic radiopharmaceuticals, while cyclotrons are used to create proton-rich nuclides, which are of interest for diagnostic purposes. Additionally, generator systems and photonuclear production are briefly discussed. Included in this chapter are the practical considerations made when designing targets for radionuclide production, as well as simple tools used for predictive modeling of target behavior. The expansive combination of target materials and production methods has led to a wide range of possibilities for the development of new and exotic radionuclides—creating the framework for a well-equipped toolbox of radiopharmaceuticals.

Keywords

Nuclear reactions Radionuclide production Nuclear reactors Cyclotrons Particle accelerators Linac Radionuclide generator Targetry Fission Q value 

References

  1. 1.
    Muranaka RG. Conversion of research reactors to low-enrichment uranium fuels. IAEA Bull. 1983;25(1):18–20.Google Scholar
  2. 2.
    National Academies of Sciences, Engineering, and Medicine. Reducing the use of highly enriched uranium in civilian research reactors. 2016. https://www.nap.edu/catalog/21818/reducing-the-use-of-highly-enriched-uranium-in-civilian-research-reactors. Accessed 31 Oct 2017.
  3. 3.
    Holloway MG, Baker CP. How the barn was born. Phys Today. 1972;25(7):9. http://physicstoday.scitation.org/doi/10.1063/1.3070918. Accessed 1 Nov 2017.
  4. 4.
    Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, et al. ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets. 2011;112(12):2887–996.CrossRefGoogle Scholar
  5. 5.
    IAEA TECDOC 1340. Manual for reactor produced radioisotopes. Vienna: International Atomic Energy Agency. http://www-pub.iaea.org/books/IAEABooks/6407/Manual-for-Reactor-Produced-Radioisotopes. Accessed 31 Oct 2017.
  6. 6.
    Koning A, Forrest R, Kellett M, Mills R, Henriksson H, Rugama Y, et al. The JEFF-3.1 Nuclear Data Library – JEFF Report 21. Organisation for Economic Co-Operation and Development; 2006. Report No. NEA--6190. http://inis.iaea.org/Search/search.aspx?orig_q=RN:45026295. Accessed 1 Nov 2017.
  7. 7.
    National Academies of Sciences, Engineering, and Medicine. Molybdenum-99 for medical imaging. 2016. https://www.nap.edu/catalog/23563/molybdenum-99-for-medical-imaging. Accessed 21 Oct 2017.
  8. 8.
    Bradley E. Non-HEU production technologies for Molybdenum-99 and Technetium-99m. Vienna: International Atomic Energy Agency; 2013.Google Scholar
  9. 9.
    National Research Council (US) Committee on Medical Isotope Production Without Highly Enriched URanium. Molybdenum-99/technetium-99m production and use. Washington DC: National Academies Press. 2009. https://www.ncbi.nlm.nih.gov/books/NBK215133/. Accessed 28 Oct 2017.
  10. 10.
    Humphries S Jr. Principles of charged particle acceleration. Mineola: Dover Publications; 2013.Google Scholar
  11. 11.
    Workshops on Targetry and Target Chemistry. Proceedings for targetry workshop 1985–2016. TRIUMF, University of British Columbia, Vancouver. http://wttc.triumf.ca/proceedings.html. Accessed 7 Apr 2018.
  12. 12.
    Matthews CME, Laszlo G, Campbell EJM, Kibby PM, Freedman S. Exchange of 11CO2 in arterial blood with body CO2 pools. Respir Physiol. 1968;6(1):29–44.CrossRefGoogle Scholar
  13. 13.
    Buckley KR, Jivan S, Ruth TJ. Improved yields for the in situ production of [11C]CH4 using a niobium target chamber. Nucl Med Biol. 2004;31(6):825–7.CrossRefGoogle Scholar
  14. 14.
    Nye JA, Avila-Rodriguez MA, Nickles RJ. A grid-mounted niobium body target for the production of reactive [18F]fluoride. Appl Radiat Isot. 2006;64(5):536–9.CrossRefGoogle Scholar
  15. 15.
    Peeples JL, Stokely MH, Michael Doster J. Thermal performance of batch boiling water targets for 18F production. Appl Radiat Isot. 2011;69(10):1349–54.CrossRefGoogle Scholar
  16. 16.
    Nye JA, Avila-Rodriguez MA, Nickles RJ. A new binary compound for the production of 124I via the 124Te(p,n)124I reaction. Appl Radiat Isot. 2007;65(4):407–12.CrossRefGoogle Scholar
  17. 17.
    Mastren T, Marquez BV, Sultan DE, Bollinger E, Eisenbeis P, Voller T, et al. Cyclotron production of high–specific activity 55Co and in vivo evaluation of the stability of 55Co metal-chelate-peptide complexes. Mol Imaging. 2015;14(10):7290.2015.00025.CrossRefGoogle Scholar
  18. 18.
    Hilgers K, Coenen HH, Qaim SM. Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via α-particle-induced reactions on 192Os. Appl Radiat Isot. 2008;66(4):545–51.CrossRefGoogle Scholar
  19. 19.
    Queern SL, Aweda TA, Massicano AVF, Clanton NA, El Sayed R, Sader JA, et al. Production of Zr-89 using sputtered yttrium coin targets. Nucl Med Biol. 2017;50(Suppl C):11–6.CrossRefGoogle Scholar
  20. 20.
    McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997;24(1):35–43.CrossRefGoogle Scholar
  21. 21.
    Fassbender ME, Ballard B, Birnbaum ER, Engle JW, John KD, Maassen JR, et al. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity 186gRe using WO3 targets. Radiochim Acta. 2013;101(5):339–46.CrossRefGoogle Scholar
  22. 22.
    Mausner LF, Prach T, Srivastava SC. Production of 82Sr by proton irradiation of RbCl. Int J Rad Appl Instrum A. 1987;38(3):181–4.CrossRefGoogle Scholar
  23. 23.
    Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, et al. Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron. Appl Radiat Isot. 2017;129:96–102.CrossRefGoogle Scholar
  24. 24.
    Fani M, Andre JP, Maecke HR. 68Ga-PET: a powerful generator-based alternative to cyclotron-based pet radiopharmaceuticals. Contrast Media Mol Imaging. 2008;3(2):53–63.CrossRefGoogle Scholar
  25. 25.
    Mamtimin M, Harmon F, Starovoitova VN. Sc-47 production from titanium targets using electron linacs. Appl Radiat Isot. 2015 Aug;102:1–4.CrossRefGoogle Scholar
  26. 26.
    Howard S, Starovoitova VN. Target optimization for the photonuclear production of radioisotopes. Appl Radiat Isot. 2015;96(Suppl C):162–7.CrossRefGoogle Scholar
  27. 27.
    Ziegler JF, Biersack JP. Stopping and range of ions in matter; SRIM. www.srim.org. Accessed 7 Apr 2018.
  28. 28.
    Nickles RJ, Daube ME, Ruth TJ. An 18O2 target for the production of [18F]F2. Int J Appl Radiat Isot. 1984;35(2):117–22.CrossRefGoogle Scholar
  29. 29.
    Pandey MK, Bansal A, Engelbrecht HP, Byrne JF, Packard AB, DeGrado TR. Improved production and processing of 89Zr using a solution target. Nucl Med Biol. 2016;43(1):97–100.CrossRefGoogle Scholar
  30. 30.
    Oehlke E, Hoehr C, Hou X, Hanemaayer V, Zeisler S, Adam MJ, et al. Production of Y-86 and other radiometals for research purposes using a solution target system. Nucl Med Biol. 2015;42(11):842–9.CrossRefGoogle Scholar
  31. 31.
    Jensen M, Clark J. Direct production of Ga-68 from proton bombardment of concentrated aqueous solutions of [Zn-68] Zinc Chloride. In Haroun S, Givskov AD, Jensen M, editors. The 13th International Workshop on Targetry and Target Chemistry Proceedings. Roskilde: Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi. 2011. pp. 288–92. (Denmark. Forskningscenter Risoe. Risoe-R; No. 1787(EN)).Google Scholar
  32. 32.
    Ruth TJ. The medical isotope crisis: how we got here and where we are going. J Nucl Med Technol. 2014;42(4):245–8.CrossRefGoogle Scholar
  33. 33.
    Nuclear Science Advisory Committee (NSAC) 99Molybdenum (99Mo) Subcommittee. Annual assessment of the NNSA-material management and minimization (M3) 99Mo program. 2016, November 3. https://science.energy.gov/~/media/np/nsac/pdf/docs/2016/Mo-99_NSAC-approved-2016.pdf. Accessed 21 Oct 2017.
  34. 34.
    Selivanova SV, Lavallée É, Senta H, Caouette L, McEwan AJB, Guérin B, et al. Clinical trial with sodium 99mTc-pertechnetate produced by a medium-energy cyclotron: biodistribution and safety assessment in patients with abnormal thyroid function. J Nucl Med. 2017;58(5):791–8.CrossRefGoogle Scholar
  35. 35.
    Hou X, Tanguay J, Buckley K, Schaffer P, Bénard F, Ruth TJ, et al. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates. Phys Med Biol. 2015;61(2):542.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations