Preclinical Experimentation in Oncology

  • Sridhar NimmagaddaEmail author
  • Sagar Shelake
  • Martin G. PomperEmail author


Molecular targeting is the foundation of current cancer therapies. Although much more progress is to be made, overall survival rates have improved in a variety of cancers. Imaging is central to the assessment of those therapies, and the clinical use of nuclear imaging technologies—specifically positron emission tomography (PET) and single photon emission computed tomography (SPECT)—continues to grow. The functional information provided by nuclear imaging enables us to diagnose, stage, and monitor tumor response to therapy. There also has been tremendous growth in radiosynthetic methods, the development of radiotracers, and the number of radiotracers evaluated in humans. The clinical utility of a radiopharmaceutical is ultimately determined by its ability to quantify target expression and provide high-contrast images with specificity and sensitivity. In light of this, the robust validation of radiotracers is essential and requires the use of both in vitro and in vivo model systems that can capture the heterogeneity and genetic complexity of tumors. Along these lines, some of the most important challenges include modeling the interactions between the tumor and the host immune system, faithfully representing human tumor genetic diversity, mimicking drug resistance, predicting the in vivo behavior of imaging agents, and appreciating interspecies differences. This chapter addresses these difficulties and the tools needed to evaluate radiotracers in the right model system.


Cancer Cell Line Encyclopedia The Cancer Genome Atlas Ligand affinity Positron emission tomography (PET) Single photon emission computed tomography (SPECT) Humanized mouse models Radiopharmaceuticals 



We gratefully acknowledge support from Allegheny Health Network-Johns Hopkins Cancer Research Fund, NIH R01CA166131, NIH R01CA236616, DoD W81XWH-16-1-0323, NIH R01 CA134675, NIH P30 CA006973, and NIH P41EB024495.


  1. 1.
    Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  2. 2.
    Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRefGoogle Scholar
  3. 3.
    Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Rowe SP, Drzezga A, Neumaier B, Dietlein M, Gorin MA, Zalutsky MR, et al. Prostate-specific membrane antigen-targeted radiohalogenated pet and therapeutic agents for prostate cancer. J Nucl Med. 2016;57(Suppl 3):90S–6S.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Eiber M, Fendler WP, Rowe SP, Calais J, Hofman MS, Maurer T, et al. Prostate-specific membrane antigen ligands for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):67S–76S.PubMedCrossRefGoogle Scholar
  6. 6.
    Wustemann T, Haberkorn U, Babich J, Mier W. Targeting prostate cancer: prostate-specific membrane antigen based diagnosis and therapy. Med Res Rev. 2018 May 17. [Epub ahead of print]
  7. 7.
    Rowe SP, Gorin MA, Salas Fragomeni RA, Drzezga A, Pomper MG. Clinical experience with (18)F-labeled small molecule inhibitors of prostate-specific membrane antigen. PET Clin. 2017;12(2):235–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Nimmagadda S, Pullambhatla M, Chen Y, Parsana P, Lisok A, Chatterjee S, et al. Low-level endogenous PSMA expression in nonprostatic tumor xenografts is sufficient for in vivo tumor targeting and imaging. J Nucl Med. 2018;59(3):486–93.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mansfield AS, Dong H. Implications of programmed cell death 1 ligand 1 heterogeneity in the selection of patients with non-small cell lung cancer to receive immunotherapy. Clin Pharmacol Ther. 2016;100(3):220–2.PubMedCrossRefGoogle Scholar
  11. 11.
    Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res. 2017;77(14):3931–41.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Eckelman WC, Reba RC, Gibson RE, Rzeszotarski WJ, Vieras F, Mazaitis JK, et al. Receptor-binding radiotracers: a class of potential radiopharmaceuticals. J Nucl Med. 1979;20(4):350–7.PubMedGoogle Scholar
  13. 13.
    Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26(1):1–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer. 2017;17(11):692–704.PubMedCrossRefGoogle Scholar
  16. 16.
    Behnam Azad B, Lisok A, Chatterjee S, Poirier JT, Pullambhatla M, Luker GD, et al. Targeted imaging of the atypical chemokine receptor 3 (ACKR3/CXCR7) in human cancer xenografts. J Nucl Med. 2016;57(6):981–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006;203(9):2201–13.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wani N, Nasser MW, Ahirwar DK, Zhao H, Miao Z, Shilo K, et al. C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Res. 2014;16(3):R54.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang SS, O’Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res. 1999;5(10):2674–81.PubMedGoogle Scholar
  21. 21.
    Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK, et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013;3(10):1108–12.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–D63.PubMedCrossRefGoogle Scholar
  23. 23.
    Salas Fragomeni RA, Amir T, Sheikhbahaei S, Harvey SC, Javadi MS, Solnes LB, et al. Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms. J Nucl Med. 2018;59(6):871–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Nimmagadda S, Pullambhatla M, Stone K, Green G, Bhujwalla ZM, Pomper MG. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res. 2010;70(10):3935–44.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vasilyev FF, Lopatnikova JA, Sennikov SV. Optimized flow cytometry protocol for analysis of surface expression of interleukin-1 receptor types I and II. Cytotechnology. 2013;65(5):795–802.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hulme EC, Trevethick MA. Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol. 2010;161(6):1219–37.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Maguire JJ, Kuc RE, Davenport AP. Radioligand binding assays and their analysis. Methods Mol Biol. 2012;897:31–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Pollastri MP. Overview on the rule of five. Curr Protoc Pharmacol. 2010;Chapter 9:Unit 9.12.Google Scholar
  29. 29.
    Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol. 2003;5(6):376–89.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang Z, Jacobson O, Tian R, Mease RC, Kiesewetter DO, Niu G, et al. Radioligand therapy of prostate cancer with a long-lasting prostate-specific membrane antigen targeting agent (90)Y-DOTA-EB-MCG. Bioconjug Chem. 2018;29(7):2309–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Pike VW. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30(8):431–40.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    De Silva RA, Peyre K, Pullambhatla M, Fox JJ, Pomper MG, Nimmagadda S. Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med. 2011;52(6):986–93.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Koenig JA, Edwardson JM. Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci. 1997;18(8):276–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A. 2011;108(46):18708–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15(5):311–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature. 2012;483(7391):613–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49(11):1567–75.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol. 2014;34(5):433–54.PubMedGoogle Scholar
  39. 39.
    Pearson T, Greiner DL, Shultz LD. Creation of “humanized” mice to study human immunity. Curr Protoc Immunol. 2008;Chapter 15:Unit 15 21.Google Scholar
  40. 40.
    England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58(1):162–68.Google Scholar
  41. 41.
    Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 2018;32(3):1537–49.PubMedCrossRefGoogle Scholar
  42. 42.
    Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, et al. Humanized mouse models of clinical disease. Annu Rev Pathol. 2017;12:187–215.PubMedCrossRefGoogle Scholar
  43. 43.
    Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48(3):434–52.PubMedCrossRefGoogle Scholar
  45. 45.
    England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58(1):162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de Greef R, et al. Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized Anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst Pharmacol. 2017;6(1):49–57.PubMedCrossRefGoogle Scholar
  47. 47.
    Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med. 2015;21(5):431–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380–4.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32(9):941–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell. 1984;38(3):627–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Quaife CJ, Pinkert CA, Ornitz DM, Palmiter RD, Brinster RL. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell. 1987;48(6):1023–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Rottenberg S, Jonkers J. Modeling therapy resistance in genetically engineered mouse cancer models. Drug Resist Updat. 2008;11(1–2):51–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Bradbury MS, Hambardzumyan D, Zanzonico PB, Schwartz J, Cai S, Burnazi EM, et al. Dynamic small-animal PET imaging of tumor proliferation with 3′-deoxy-3′-18F-fluorothymidine in a genetically engineered mouse model of high-grade gliomas. J Nucl Med. 2008;49(3):422–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Natarajan A, Hackel BJ, Gambhir SS. A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkin’s lymphoma. Clin Cancer Res. 2013;19(24):6820–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Li AP. Overview: hepatocytes and cryopreservation – a personal historical perspective. Chem Biol Interact. 1999;121(1):1–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.PubMedCrossRefGoogle Scholar
  57. 57.
    Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89.PubMedCrossRefGoogle Scholar
  58. 58.
    Houghton JL, Zeglis BM, Abdel-Atti D, Aggeler R, Sawada R, Agnew BJ, et al. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci U S A. 2015;112(52):15850–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58(18):4055–60.PubMedGoogle Scholar
  60. 60.
    Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 1995;55(20):4611–22.PubMedGoogle Scholar
  63. 63.
    Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs. 2016;8(3):593–603.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215–27.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Eckelman WC, Kilbourn MR, Joyal JL, Labiris R, Valliant JF. Justifying the number of animals for each experiment. Nucl Med Biol. 2007;34(3):229–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations