The Basics of Nuclear Chemistry and Radiochemistry: An Introduction to Nuclear Transformations and Radioactive Emissions

  • Frank RöschEmail author


Radiopharmaceutical chemistry and nuclear medicine make use of radioactive elements and compounds labeled with them. This chapter describes the fundamentals of radioactivity in the context of life sciences. It addresses principal questions such as: What is the composition of an atomic nucleus and what are the forces which hold nucleons bound within the nucleus? Even so, some nuclei are stable, and many others are not—why? The fate of unstable nuclei is transforming into more stable nucleon configurations—but what are the basic pathways to do so? What’s going on inside the nucleus? What are the energetics and velocities of these transformations? And finally, the various changes inside the nucleus and in part also in the electron shell of the unstable nucleus are accompanied by individual emissions of electromagnetic and particular radiations: beta-electrons and positrons, electron neutrinos and anti-electron neutrinos, alpha particles, gamma-photons and X-rays, conversion electrons and Auger/Coster-Kronig electrons, and bremsstrahlung. What are those emissions in detail?


Unstable nuclei Excited nuclear levels Liquid drop model Shell model Mass defect Nucleon binding energy Nucleons Quarks Radioactivity Primary transformations Secondary transformations Post-effects Radioactive emissions 


  1. 1.
    Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F, editors. Handbook of nuclear chemistry, 6 vol., 2nd ed. Berlin-Heidelberg: Springer; 2011.Google Scholar
  2. 2.
    Rösch F, editor. Nuclear- and radiochemistry. Vol. I: Introduction. Berlin/Boston: Walter de Gruyter; 2014.Google Scholar
  3. 3.
    Rösch F, editor. Nuclear- and radiochemistry. Vol. II: Modern applications. Berlin/Boston: Walter de Gruyter; 2016.Google Scholar
  4. 4.
    International Atomic Energy Agency. Nuclear Data Services. AMDC – Atomic Mass Data Center. Last Updated: 9 Nov 2017 Accessed 8 Jan 2018.
  5. 5.
    Huang WJ, Audi G, Wang M, Kondev FG, Naimi S, Xu X. The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures. Chin Phys C. 2017;41(3):030002.CrossRefGoogle Scholar
  6. 6.
    Wang M, Audi G, Kondev FG, Huang WJ, Naimi S, Xu X. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin Phys C. 2017;41(3):030003.CrossRefGoogle Scholar
  7. 7.
    National Nuclear Data Center, Brookhaven National Laboratory. Interactive chart of nuclides. (Masses and reaction data for all nuclides across the periodic table, based on ENSDF and the Nuclear Wallet Cards). Accessed 8 Jan 2018.
  8. 8.
    Wieser ME, Berglund M. Weight of natural elements. Pure Appl Chem. 2009;81(11):2131–56.CrossRefGoogle Scholar
  9. 9.
    Magill J. Chart of nuclides, nuclear data in Nucleonica, Karslruhe. 2010. Accessed 8 Jan 2018.
  10. 10.
    Rösch F, Herzog H, Qaim SM. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals (Basel). 2017;10(2):56. Scholar
  11. 11.
    Krenning EP, Kooij PP, Bakker WH, Breeman WAP, Postema PTE, Kwekkeboom DJ, et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide: a case history. Ann N Y Acad Sci. 1994;733:496–506.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Nuclear ChemistryJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations