Advertisement

Click Chemistry in Radiopharmaceutical Chemistry

  • James C. Knight
  • Bart CornelissenEmail author
Chapter

Abstract

For any chemist embarking on the synthesis of a particular compound, the prospect of using a chemical reaction which will very rapidly form the desired product in high yields without any fuss is highly attractive. Click chemistry reactions are the embodiment of this concept and are now widely used as efficient and versatile methods for the synthesis of radiopharmaceuticals. Click chemistry transformations certainly make the lives of radiochemists a little easier, but even more importantly, the speed and simplicity offered by these reactions address a fundamental challenge in the production of radiotracers: the short-lived nature of many radionuclides, particularly positron emitters. In this chapter, we will introduce a variety of commonly used click chemistry reactions and describe how they have been applied to the preparation of radiopharmaceuticals. The concept of pretargeted imaging and therapy will also be introduced with special emphasis on how click chemistry reactions have been refined for these applications.

Keywords

Click chemistry Bioorthogonal chemistry Radiochemistry Positron emission tomography PET IEDDA SPAAC 

References

  1. 1.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40(11):2004–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Nwe K, Brechbiel MW. Growing applications of "click chemistry" for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009;24(3):289–302.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wängler C, Schirrmacher R, Bartenstein P, Wängler B. Click-chemistry reactions in radiopharmaceutical chemistry: fast & easy introduction of radiolabels into biomolecules for in vivo imaging. Curr Med Chem. 2010;17(11):1092–116.PubMedCrossRefGoogle Scholar
  4. 4.
    Marik J, Sutcliffe JL. Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006;47(37):6681–4.CrossRefGoogle Scholar
  5. 5.
    Hausner SH, Marik J, Gagnon MKJ, Sutcliffe JL. In vivo positron emission tomography (PET) imaging with an αvβ6 specific peptide radiolabeled using 18F-"click" chemistry: evaluation and comparison with the corresponding 4-[18F]fluorobenzoyl- and 2-[18F] fluoropropionyl-peptides. J Med Chem. 2008;51(19):5901–4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Li ZB, Wu Z, Chen K, Chin FT, Chen X. Click chemistry for 18F-labeling of RGD peptides and microPET imaging of tumor integrin αvβ3 expression. Biconjug Chem. 2007;18(6):1987–94.CrossRefGoogle Scholar
  7. 7.
    Richter S, Wuest F. 18F-Labeled Peptides: The future is bright. Molecules. 2014;19(12):20536.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kettenbach K, Schieferstein H, Ross TL. 18F-labeling using click cycloadditions. Biomed Res Int. 2014;2014:16.CrossRefGoogle Scholar
  9. 9.
    Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Biconjug Chem. 2015;26(1):1–18.CrossRefGoogle Scholar
  10. 10.
    Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Engl. 2008;47(47):8998–9033.PubMedCrossRefGoogle Scholar
  11. 11.
    Preshlock S, Tredwell M, Gouverneur V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev. 2016;116(2):719–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Brooks AF, Topczewski JJ, Ichiishi N, Sanford MS, Scott PJH. Late-stage [18F]fluorination: new solutions to old problems. Chem Sci. 2014;5(12):4545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002;41(14):2596–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Huisgen R. 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl. 1963;2(10):565–98.CrossRefGoogle Scholar
  15. 15.
    Huisgen R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew Chem Int Ed Engl. 1963;2(11):633–45.CrossRefGoogle Scholar
  16. 16.
    Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Organ Chem. 2002;67(9):3057–64.CrossRefGoogle Scholar
  17. 17.
    Ross TL, Honer M, Lam PYH, Mindt TL, Groehn V, Schibli R, et al. Fluorine-18 click radiosynthesis and preclinical evaluation of a new 18F-labeled folic acid derivative. Biconjug Chem. 2008;19(12):2462–70.CrossRefGoogle Scholar
  18. 18.
    Glaser M, Årstad E. “Click labeling” with 2-[18F]fluoroethylazide for positron emission tomography. Biconjug Chem. 2007;18(3):989–93.CrossRefGoogle Scholar
  19. 19.
    Glaser M, Goggi J, Smith G, Morrison M, Luthra SK, Robins E, et al. Improved radiosynthesis of the apoptosis marker 18F-ICMT11 including biological evaluation. Bioorg Med Chem Lett. 2011;21(23):6945–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Ackermann U, O’Keefe G, Lee ST, Rigopoulos A, Cartwright G, Sachinidis JI, et al. Synthesis of a [18F]fluoroethyltriazolylthymidine radiotracer from [18F]2-fluoroethyl azide and 5-ethynyl-2′-deoxyuridine. J Labelled Comp Radiopharm. 2011;54(5):260–6.CrossRefGoogle Scholar
  21. 21.
    Smith G, Glaser M, Perumal M, Nguyen QD, Shan B, Årstad E, et al. Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18f]fluoroethylazide. J Med Chem. 2008;51(24):8057–67.Google Scholar
  22. 22.
    Zhou D, Chu W, Peng X, McConathy J, Mach RH, Katzenellenbogen JA. Facile purification and click labeling with 2-[18F]fluoroethyl azide using solid phase extraction cartridges. Tetrahedron Lett. 2015;56(7):952–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Schirrmacher R, Lakhrissi Y, Jolly D, Goodstein J, Lucas P, Schirrmacher E. Rapid in situ synthesis of [11C]methyl azide and its application in 11C click-chemistry. Tetrahedron Lett. 2008;49(33):4824–7.CrossRefGoogle Scholar
  24. 24.
    Mindt TL, Müller C, Melis M, De Jong M, Schibli R. “Click-to-chelate”: in vitro and in vivo comparison of a 99mTc(CO)3-labeled N(τ)-histidine folate derivative with its isostructural, clicked 1,2,3-triazole analogue. Biconjug Chem. 2008;19(8):1689–95.CrossRefGoogle Scholar
  25. 25.
    Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126(46):15046–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Dommerholt J, Rutjes FPJT, van Delft FL. Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top Curr Chem. 2016;374(2):16.CrossRefGoogle Scholar
  27. 27.
    Mbua NE, Guo J, Wolfert MA, Steet R, Boons GJ. Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. Chembiochem. 2011;12(12):1912–21.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nikić I, Kang JH, Girona GE, Aramburu IV, Lemke EA. Labeling proteins on live mammalian cells using click chemistry. Nat Protoc. 2015;10:780.PubMedCrossRefGoogle Scholar
  29. 29.
    Stockmann H, Neves AA, Stairs S, Ireland-Zecchini H, Brindle KM, Leeper FJ. Development and evaluation of new cyclooctynes for cell surface glycan imaging in cancer cells. Chem Sci. 2011;2(5):932–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Turner RB, Jarrett AD, Goebel P, Mallon BJ. Heats of hydrogenation. IX. Cyclic acetylenes and some miscellaneous olefins. J Am Chem Soc. 1973;95(3):790–2.CrossRefGoogle Scholar
  31. 31.
    Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev. 2010;39(4):1272–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, et al. Copper-free click chemistry for dynamic in vivo imaging. Proc Acad Sci USA. 2007;104(43):16793–7.Google Scholar
  33. 33.
    McKay Craig S, Finn MG. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol. 2014;21(9):1075–101.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc. 2008;130(34):11486–93.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Varga BR, Kállay M, Hegyi K, Béni S, Kele P. A non-fluorinated monobenzocyclooctyne for rapid copper-free click reactions. Chemistry. 2012;18(3):822–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Ning X, Guo J, Wolfert MA, Boons GJ. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew Chem Int Ed Engl. 2008;47(12):2253–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jewett JC, Sletten EM, Bertozzi CR. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc. 2010;132(11):3688–90.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, Van Hest JCM, et al. Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem Int Ed Engl. 2010;49(49):9422–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gordon CG, Mackey JL, Jewett JC, Sletten EM, Houk KN, Bertozzi CR. Reactivity of biarylazacyclooctynones in copper-free click chemistry. J Am Chem Soc. 2012;134(22):9199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bouvet V, Wuest M, Wuest F. Copper-free click chemistry with the short-lived positron emitter fluorine-18. Org Biomol Chem. 2011;9(21):7393–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hausner SH, Carpenter RD, Bauer N, Sutcliffe JL. Evaluation of an integrin αvβ6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl Med Biol. 2013;40(2):233–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Knall A-C, Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem Soc Rev. 2013;42(12):5131–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Thalhammer F, Wallfahrer U, Sauer J. Reaktivität einfacher offenkettiger und cyclischer dienophile bei Diels-Alder-reaktionen mit inversem elektronenbedarf. Tetrahedron Lett. 1990;31(47):6851–4.CrossRefGoogle Scholar
  44. 44.
    Selvaraj R, Fox JM. trans-Cyclooctene—a stable, voracious dienophile for bioorthogonal labeling. Curr Opin Chem Biol. 2013;17(5):753–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schoch J, Staudt M, Samanta A, Wiessler M, Jäschke A. Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Biconjug Chem. 2012;23(7):1382–6.CrossRefGoogle Scholar
  46. 46.
    Karver MR, Weissleder R, Hilderbrand SA. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Biconjug Chem. 2011;22(11):2263–70.CrossRefGoogle Scholar
  47. 47.
    Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic diels–alder reactions. J Am Chem Soc. 2012;134(25):10317–20.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Blackman ML, Royzen M, Fox JM. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand diels−alder reactivity. J Am Chem Soc. 2008;130(41):13518–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Taylor MT, Blackman ML, Dmitrenko O, Fox JM. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. J Am Chem Soc. 2011;133(25):9646–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liang Y, Mackey JL, Lopez SA, Liu F, Houk KN. Control and design of mutual orthogonality in bioorthogonal cycloadditions. J Am Chem Soc. 2012;134(43):17904–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Neves AA, Stöckmann H, Wainman YA, Kuo JCH, Fawcett S, Leeper FJ, et al. Imaging cell surface glycosylation in vivo using “double click” chemistry. Biconjug Chem. 2013;24(6):934–41.CrossRefGoogle Scholar
  52. 52.
    Li Z, Cai H, Hassink M, Blackman ML, Brown RCD, Conti PS, et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem Commun (Cambridge). 2010;46(42):8043–5.CrossRefGoogle Scholar
  53. 53.
    Keliher EJ, Reiner T, Turetsky A, Hilderbrand SA, Weissleder R. High-yielding, two-step 18F labeling strategy for 18F-PARP1 inhibitors. ChemMedChem. 2011;6(3):424–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Reiner T, Lacy J, Keliher EJ, Yang KS, Ullal A, Kohler RH, et al. Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. Neoplasia. 2012;14:169–77.Google Scholar
  55. 55.
    Selvaraj R, Liu S, Hassink M. Huang C-w, Yap L-p, Park R, et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg Med Chem Lett. 2011;21(17):5011–4.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Liu S, Hassink M, Selvaraj R, Yap L-P, Park R, Wang H, et al. Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol Imaging. 2013;12(2):121–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wu Z, Liu S, Hassink M, Nair I, Park R, Li L, et al. Development and evaluation of 18F-TTCO-Cys40-Exendin-4: A PET probe for imaging transplanted islets. J Nucl Med. 2013;54(2):244–51.Google Scholar
  58. 58.
    Luo H, England CG, Goel S, Graves SA, Ai F, Liu B, et al. ImmunoPET and near-infrared fluorescence imaging of pancreatic cancer with a dual-labeled bispecific antibody fragment. Mol Pharm. 2017;14(5):1646–55.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Luo H, Hernandez R, Hong H, Graves SA, Yang Y, England CG, et al. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proc Natl Acad Sci USA. 2015;112(41):12806–11.Google Scholar
  60. 60.
    Meyer JP, Kozlowski P, Jackson J, Cunanan KM, Adumeau P, Dilling TR, et al. Exploring structural parameters for pretargeting radioligand optimization. J Med Chem 2017;60(19):8201–17.Google Scholar
  61. 61.
    Houghton JL, Membreno R, Abdel-Atti D, Cunanan KM, Carlin S, Scholz WW, et al. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand diels-alder click chemistry. Mol Cancer Ther. 2017;16(1):124–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Yazdani A, Bilton H, Vito A, Genady AR, Rathmann SM, Ahmad Z, et al. A Bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: a proof of concept study using 99mtc- and 177lu-labeled tetrazines. J Med Chem. 2016;59(20):9381–9.Google Scholar
  63. 63.
    Cook BE, Adumeau P, Membreno R, Carnazza KE, Brand C, Reiner T, et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Biconjug Chem. 2016;27(8):1789–95.CrossRefGoogle Scholar
  64. 64.
    Meyer JP, Houghton JL, Kozlowski P, Abdel-Atti D, Reiner T, Pillarsetty NVK, et al. 18F-based pretargeted PET imaging based on bioorthogonal Diels-Alder click chemistry. Biconjug Chem. 2016;27(2):298–301.CrossRefGoogle Scholar
  65. 65.
    Adumeau P, Carnazza KE, Brand C, Carlin SD, Reiner T, Agnew BJ, et al. A pretargeted approach for the multimodal PET/NIRF imaging of colorectal cancer. Theranostics. 2016;6(12):2267–77.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, et al. Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm. 2015;12(10):3575–87.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, et al. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med. 2013;54(8):1389–96.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Altai M, Perols A, Tsourma M, Mitran B, Honarvar H, Robillard M, et al. Feasibility of affibody-based bioorthogonal chemistry-mediated radionuclide pretargeting. J Nucl Med. 2016;57(3):431–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Van Duijnhoven SMJ, Rossin R, Van Den Bosch SM, Wheatcroft MP, Hudson PJ, Robillard MS. Diabody pretargeting with click chemistry in vivo. J Nucl Med. 2015;56(9):1422–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Rossin R, Van Duijnhoven SMJ, Läppchen T, Van Den Bosch SM, Robillard MS. Trans-cyclooctene tag with improved properties for tumor pretargeting with the Diels-Alder reaction. Mol Pharm. 2014;11(9):3090–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Rossin R, Robillard MS. Pretargeted imaging using bioorthogonal chemistry in mice. Curr Opin Chem Biol. 2014;21:161–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Rossin R, Läppchen T, Van Den Bosch SM, Laforest R, Robillard MS. Diels-alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J Nucl Med. 2013;54(11):1989–95.PubMedCrossRefGoogle Scholar
  73. 73.
    Rossin R, Van Den Bosch SM, Ten Hoeve W, Carvelli M, Versteegen RM, Lub J, et al. Highly reactive trans-cyclooctene tags with improved stability for diels-alder chemistry in living systems. Biconjug Chem. 2013;24(7):1210–7.CrossRefGoogle Scholar
  74. 74.
    Rossin R, Verkerk PR, Van Den Bosch SM, Vulders RCM, Verel I, Lub J, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed Engl. 2010;49(19):3375–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Keinänen O, Li XG, Chenna NK, Lumen D, Ott J, Molthoff CFM, et al. A new highly reactive and low lipophilicity Fluorine-18 labeled tetrazine derivative for pretargeted PET imaging. ACS Med Chem Lett. 2016;7(1):62–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Keinänen O, Mäkilä EM, Lindgren R, Virtanen H, Liljenbäck H, Oikonen V, et al. Pretargeted PET imaging of trans-cyclooctene-modified porous silicon nanoparticles. ACS Omega. 2017;2(1):62–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Knight JC, Richter S, Wuest M, Way JD, Wuest F. Synthesis and evaluation of an 18F-labelled norbornene derivative for copper-free click chemistry reactions. Org Biomol Chem. 2013;11(23):3817–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Zeglis BM, Mohindra P, Weissmann GI, Divilov V, Hilderbrand SA, Weissleder R, et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand diels-alder click chemistry. Bioconjug Chem. 2011;22(10):2048–59.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Keliher EJ, Reiner T, Thurber GM, Upadhyay R, Weissleder R. Efficient 18F-labeling of synthetic Exendin-4 analogues for imaging beta cells. ChemistryOpen. 2012;1(4):177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM. Pretargeted imaging and therapy. J Nucl Med. 2017;58(10):1553–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    van de Watering FC, Rijpkema M, Robillard M, Oyen WJ, Boerman OC. Pretargeted imaging and radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry. Front Med (Lausanne). 2014;1:44.Google Scholar
  82. 82.
    Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am J Nucl Med Mol Imaging. 2014;4(2):96–113.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Börjesson PKE, Jauw YWS, Boellaard R, De Bree R, Comans EFI, Roos JC, et al. Performance of immuno – positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12(7 Pt 1):2133–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, De Jong JR, et al. Biodistribution of 89 Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Rizvi SN, Visser OJ, Vosjan MJ, Van Lingen A, Hoekstra OS, Zijlstra JM, et al. Biodistribution, radiation dosimetry and scouting of 90Y- ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin‘s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging. 2012;39(3):512–20.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gaykema SBM, Brouwers AH, Hooge MNLD, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54(7):1014–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, Vugts DJ, Roth C, Luik AM, et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget. 2015;6(30):30384–93.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Muylle K, Flamen P, Vugts DJ, Guiot T, Ghanem G, Meuleman N, et al. Tumour targeting and radiation dose of radioimmunotherapy with 90Y-rituximab in CD20+ B-cell lymphoma as predicted by 89Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur J Nucl Med Mol Imaging. 2015;42(8):1304–14.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Laforest R, Lapi SE, Oyama R, Bose R, Tabchy A, Marquez-Nostra BV, et al. [89Zr]Trastuzumab: evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer. Mol Imaging Biol. 2016;18(6):952–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hnatowich DJ, Virzi F, Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med. 1987;28(8):1294–302.PubMedGoogle Scholar
  91. 91.
    Green NM. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Liu G, Dou S, Liu Y, Wang Y, Rusckowski M, Hnatowich DJ. 90Y labeled phosphorodiamidate morpholino oligomer for pretargeting radiotherapy. Bioconjug Chem. 2011;22(12):2539–45.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Liu G, Dou S, Cheng D, Leif J, Rusckowski M, Streeter PR, et al. Human islet cell MORF/cMORF pretargeting in a xenogeneic murine transplant model. Mol Pharm. 2011;8(3):767–73.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    He J, Wang Y, Dou S, Liu X, Zhang S, Liu G, et al. Affinity enhancement pretargeting: synthesis and testing of a 99mTc-labeled bivalent MORF. Mol Pharm. 2010;7(4):1118–24.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Liu G, Liu C, Zhang S, He J, Liu N, Gupta S, et al. Investigations of 99mTc morpholino pretargeting in mice. Nucl Med Commun. 2003;24(6):697–705.PubMedCrossRefGoogle Scholar
  96. 96.
    He J, Liu G, Gupta S, Zhang Y, Rusckowski M, Hnatowich DJ. Amplification targeting: a modified pretargeting approach with potential for signal amplification—proof of a concept. J Nucl Med. 2004;45(6):1087–95.PubMedGoogle Scholar
  97. 97.
    Liu G, Cheng D, Dou S, Chen X, Liang M, Pretorius PH, et al. Replacing 99mTc with 111In improves MORF/cMORF pretargeting by reducing intestinal accumulation. Mol Imaging Biol. 2009;11(5):303–7.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Liu G, Dou S, Rusckowski M, Hnatowich DJ. An experimental and theoretical evaluation of the influence of pretargeting antibody on the tumor accumulation of effector. Mol Cancer Ther. 2008;7(5):1025–32.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Liu G, Dou S, Baker S, Akalin A, Cheng D, Chen L, et al. A preclinical 188Re tumor therapeutic investigation using MORF/cMORF pretargeting and an antiTAG-72 antibody CC49. Cancer Biol Ther. 2010;10(8):767–74.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang Y, Chang F, Zhang Y, Liu N, Liu G, Gupta S, et al. Pretargeting with amplification using polymeric peptide nucleic acid. Biconjug Chem. 2001;12(5):807–16.CrossRefGoogle Scholar
  101. 101.
    He J, Rusckowski M, Wang Y, Dou S, Liu X, Zhang S, et al. Optical pretargeting of tumor with fluorescent MORF oligomers. Mol Imaging Biol. 2007;9(1):17–23.PubMedCrossRefGoogle Scholar
  102. 102.
    Knight JC, Mosley M, Uyeda HT, Cong M, Fan F, Faulkner S, et al. In vivo pretargeted imaging of HER2 and TAG-72 expression using the halotag enzyme. Mol Pharm. 2017;14(7):2307–13.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Knight JC, Mosley M, Stratford MRL, Uyeda HT, Benink HA, Cong M, et al. Development of an enzymatic pretargeting strategy for dual-modality imaging. Chem Commun. 2015;51(19):4055–8.CrossRefGoogle Scholar
  104. 104.
    Rossin R, Renart Verkerk P, van den Bosch SM, Vulders RCM, Verel I, Lub J, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem. 2010;122(19):3447–50.CrossRefGoogle Scholar
  105. 105.
    Läppchen T, Rossin R, van Mourik TR, Gruntz G, Hoeben FJM, Versteegen RM, et al. DOTA-tetrazine probes with modified linkers for tumor pretargeting. Nucl Med Biol. 2017;55:19–26.PubMedCrossRefGoogle Scholar
  106. 106.
    Zeglis BM, Davis CB, Abdel-Atti D, Carlin SD, Chen A, Aggeler R, et al. Chemoenzymatic strategy for the synthesis of site-specifically labeled immunoconjugates for multimodal PET and optical imaging. Bioconjug Chem. 2014;25(12):2123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zeglis BM, Davis CB, Aggeler R, Kang HC, Chen A, Agnew BJ, et al. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Biconjug Chem. 2013;24(6):1057–67.CrossRefGoogle Scholar
  108. 108.
    Dennler P, Chiotellis A, Fischer E, Brégeon D, Belmant C, Gauthier L, et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Biconjug Chem. 2014;25(3):569–78.CrossRefGoogle Scholar
  109. 109.
    Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS. Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew Chem Int Ed Engl. 2013;52(52):14112–6.Google Scholar
  110. 110.
    Rossin R, van Duijnhoven SMJ, ten Hoeve W, Janssen HM, Kleijn LHJ, Hoeben FJM, et al. Triggered drug release from an antibody–drug conjugate using fast “click-to-release” chemistry in mice. Biconjug Chem. 2016;27(7):1697–706.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CRUK/MRC Oxford Institute for Radiation Oncology, Radiobiology Research Institute, Churchill Hospital (Headington), Department of OncologyUniversity of OxfordOxfordUK

Personalised recommendations