The Radiopharmaceutical Chemistry of Carbon-11: Basic Principles

  • Gunnar AntoniEmail author


Carbon-11 is an accelerator-produced, positron-emitting radionuclide. Its physical half-life of 20.4 min is sufficiently long to allow for multistep syntheses while short enough to enable multiple PET scans of the same individual on the same day. Carbon-11’s short half-life is also advantageous with respect to the radiation dose to the subject undergoing investigation; indeed, for most carbon-11 PET tracers, up to four administrations to healthy volunteers can be accepted. The radionuclide decays almost exclusively via positron emission (β+), and the emitted particle has a maximum energy of 0.960 MeV. Carbon-11 is produced using a cyclotron in high molar activity, a prerequisite for the tracer principle which underlies the very concept for PET. From the precursor [11C]carbon dioxide, a large number of secondary precursors can be synthesized, thus creating a wide range of opportunities for labeling biologically relevant compounds. Undoubtedly, the most useful of all these secondary precursors is [11C]methyl iodide due to the presence of methylated heteroatoms in many drugs and naturally occurring biomolecules.


Carbon-11 Radiochemistry Positron emission tomography PET tracers Radiolabeling 


  1. 1.
    Crane HR, Lauritsen CC. Radioactivity from carbon and boron oxide bombarded with deutons and the conversion of positrons into radiation. Phys Rev. 1934;45(6):430–2.CrossRefGoogle Scholar
  2. 2.
    Ruben S, Hassid WZ, Kamen MD. Radioactive carbon in the study of photosynthesis. J Am Chem Soc. 1939;61(3):661–3.CrossRefGoogle Scholar
  3. 3.
    Tobias CA, Lawrence JH, Roughton F, Root W, Gregersen M. The elimination of carbon monoxide from the human body with reference to the possible conversion of CO to CO2. Am J Phys. 1945;145:253–63.CrossRefGoogle Scholar
  4. 4.
    Ter-Pogossian MM, Wagner HN. A new look at the cyclotron for making short-lived isotopes. Nucleonics. 1966;24:50–62.Google Scholar
  5. 5.
    Christman DR, Finn RD, Karlstrom KI, Wolf AP. The production of ultra high activity 11C-labeled hydrogen cyanide, carbon dioxide, carbon monoxide and methane via the 14N (p,α)11C reaction. Int J Appl Radiat Isot. 1975;26(8):435–42.Google Scholar
  6. 6.
    Långström B, Lundqvist H. The preparation of [11C]methyl iodide and its use in the synthesis of [methyl-11C]-L-methionine. Int J Appl Radiat Isot. 1976;27(7):357–63.CrossRefGoogle Scholar
  7. 7.
    Antoni G, Kihlberg T, Långström B. Aspects on the synthesis of 11C-labeled compounds. In: Welch M, Redvanly C, editors. Handbook of radiopharmaceuticals, radiochemistry and applications. Chichester: John Wiley & Sons Ltd.; 2003. p. 141–94.Google Scholar
  8. 8.
    Wuest F, Berndt M, Kniess T. Carbon-11 labeling chemistry based upon [11C]methyl iodide. In: Schubiger PA, Lehmann L, Friebe M, editors. PET chemistry. Ernst Schering Research Foundation Workshop, vol. 64. Heidelberg/Berlin: Springer-Verlag; 2007. p. 183–213.Google Scholar
  9. 9.
    Antoni G, Kihlberg T, Långström B. 11C: Labeling chemistry and labeled compounds. In: Vértes A, Nagy S, Klencsár Z, editors. Handbook of nuclear chemistry, Vol. 4, Radiochemsitry and radiopharmaceutical chemistry in life sciences. Dordrecht, the Netherlands: Kluwer Academic; 2003. p. 119–57.Google Scholar
  10. 10.
    Bjurling P, Watanabe Y, Tokushige M, Oda T, Långström B. Syntheses of β-11C-labeled L-tryptophan and 5-hydroxy-L-tryptophan by using a multi-enzymatic route. J Chem Soc Perkin Trans. 1989;1:1331–4.CrossRefGoogle Scholar
  11. 11.
    Gómez-Vallejo V, Gaja V, Koziorowski J, Llop J. Specific activity of 11C-labeled radiotracers. In: Hsieh C-H, editor. A big challenge for PET chemists, positron emission tomography—current clinical and research aspects. InTech; 2012. p. 183–210. Scholar
  12. 12.
    Långström B, Itsenko O, Rahman O. [11C]Carbon monoxide, a versatile and useful precursor in labelling chemistry for PET-ligand development. J Labelled Comp Radiopharm. 2007;50(9–10):794–810.CrossRefGoogle Scholar
  13. 13.
    Audrain H, Martarello L, Gee A, Bender D. Utilisation of [11C]-labeled boron carbonyl complexes in palladium carbonylation reaction. Chem Commun (Camb). 2004;5:558–9.CrossRefGoogle Scholar
  14. 14.
    Kihlberg T, Långström B. Method and apparatus for production and use of [11C]carbon monoxide in labeling synthesis. PCT Int Appl. 2002; WO, 2002102711 A1Google Scholar
  15. 15.
    Eriksson J, van den Hoek J, Windhorst AD. Transition metal mediated synthesis using [11C]CO at low pressure – a simplified method for 11C-carbonylation. J Labelled Comp Radiopharm. 2012;55(6):223–8.Google Scholar
  16. 16.
    Verbeek J, Eriksson J, Syvänen S, Labots M, de Lange EC, Voskuyl RA, et al. [11C]phenytoin revisited: synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats. EJNMMI Res. 2012;2(1):36.CrossRefGoogle Scholar
  17. 17.
    Torstenson R, Tedroff J, Hartvig P, Fasth KJ, Långström B. A comparison of 11C-labeled L-DOPA and L-fluorodopa as positron emission tomography tracers for the presynaptic dopaminergic system. J Cereb Blood Flow Metab. 1999;19(10):1142–9.CrossRefGoogle Scholar
  18. 18.
    Osman S, Lundkvist C, Pike VW, Halldin C, McCarron JA, Swahn CG, et al. Characterization of the radioactive metabolites of the 5-HT1A receptor radioligand, [O-methl-11C]WAY-100635, in monkey and human plasma by HPLC: comparison of the behaviour of an identified radioactive metabolite with parent radioligand in monkey using PET. Nucl Med Biol. 1996;23(5):627–34.CrossRefGoogle Scholar
  19. 19.
    Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med. 1995;36(7):1255–62.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.PET Centre, Uppsala University HospitalUppsalaSweden

Personalised recommendations