Why Nuclear Imaging and Radiotherapy?

  • David MankoffEmail author


Nuclear medicine is a diagnostic and therapeutic medical subspecialty that focuses on the use of radiopharmaceuticals for measuring in vivo molecular biology and for identifying and quantifying functional and molecular pathophysiology associated with a variety of disease processes. Molecules labeled with radionuclides—termed radiopharmaceuticals or radiotracers—are a fundamental component of the specialty. As such, radiopharmaceutical chemistry is a key discipline for nuclear medicine. This introductory chapter describes the fundamental principles of nuclear medicine, reviews the current and future applications of nuclear imaging and targeted radiotherapy, contrasts nuclear medicine with other approaches to imaging and therapy, delineates the scientific and technological tools key to the field, and highlights future directions for the specialty.


Nuclear medicine Molecular imaging Diagnostic imaging Radionuclide therapy (or theranostics) Clinical practice Clinical research 



The author wishes to thank Drs. Katrina Korhonen, Austin Pantel, Yin Jie Chen, and Ilya Nasrallah of the University of Pennsylvania for their help with the images for this chapter.


  1. 1.
    Frey KA, Royal HD, Di Carli MF, Dillehay GL, Gordon L, Mankoff DA, et al. ABNM position statement: nuclear medicine professional competency and scope of practice. J Nucl Med. 2011;52(6):994–7.CrossRefGoogle Scholar
  2. 2.
    Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48(6):18N. 21NPubMedGoogle Scholar
  3. 3.
    Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):pii: eaaf6169.Google Scholar
  4. 4.
    Surti S. Update on time-of-flight PET imaging. J Nucl Med. 2015;56(1):98–105.CrossRefGoogle Scholar
  5. 5.
    Mankoff DA, Link JM, Linden HM, Sundararajan L, Krohn KA. Tumor receptor imaging. J Nucl Med. 2008;9(Suppl 2):149S–63S.CrossRefGoogle Scholar
  6. 6.
    Peterson LM, Kurland BF, Link JM, Schubert EK, Stekhova S, Linden HM, et al. Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol. 2011;38(7):969–78.CrossRefGoogle Scholar
  7. 7.
    Tu Z, Mach RH. C-11 radiochemistry in cancer imaging applications. Curr Top Med Chem. 2010;10(11):1060–95.CrossRefGoogle Scholar
  8. 8.
    Jhanwar YS, Divgi C. Current status of therapy of solid tumors. J Nucl Med. 2005;46(Suppl 1):141S–50S.PubMedGoogle Scholar
  9. 9.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.CrossRefGoogle Scholar
  10. 10.
    Schmidt M, Baum RP, Simon T, Howman-Giles R. Therapeutic nuclear medicine in pediatric malignancy. Q J Nucl Med Mol Imaging. 2010;54(4):411–28.PubMedGoogle Scholar
  11. 11.
    Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45(8):1358–65.PubMedGoogle Scholar
  12. 12.
    Pryma DA, Mandel SJ. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. J Nucl Med. 2014;55(9):1485–91.CrossRefGoogle Scholar
  13. 13.
    Cutler CS, Lewis JS, Anderson CJ. Utilization of metabolic, transport and receptor-mediated processes to deliver agents for cancer diagnosis. Adv Drug Deliv Rev. 1999;37(1–3):189–211.CrossRefGoogle Scholar
  14. 14.
    O’Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14(3):169–86.CrossRefGoogle Scholar
  15. 15.
    Mankoff DA, Eary JF, Link JM, Muzi M, Rajendran JG, Spence AM, et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin Cancer Res. 2007;13(12):3460–9.CrossRefGoogle Scholar
  16. 16.
    Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med. 2013;54(7):1007–10.CrossRefGoogle Scholar
  17. 17.
    Schuster DM, Nanni C, Fanti S. Evaluation of prostate cancer with radiolabeled amino acid analogs. J Nucl Med. 2016;57(Suppl 3):61S–6S.CrossRefGoogle Scholar
  18. 18.
    Schwarzenboeck SM, Rauscher I, Bluemel C, Fendler WP, Rowe SP, Pomper MG, et al. PSMA ligands for PET imaging of prostate cancer. J Nucl Med. 2017;58(10):1545–52.CrossRefGoogle Scholar
  19. 19.
    Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46(8):1356–67.PubMedGoogle Scholar
  20. 20.
    Meller J, Becker W. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur J Nucl Med Mol Imaging. 2002;29(Suppl 2):S425–38.CrossRefGoogle Scholar
  21. 21.
    Baum RP, Kulkarni HR, Carreras C. Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Sem Nucl Med. 2012;42(3):190–207.CrossRefGoogle Scholar
  22. 22.
    Bravo PE, Di Carli MF, Dorbala S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev. 2017;22(4):455–64.CrossRefGoogle Scholar
  23. 23.
    Dorbala S, Di Carli MF. Cardiac PET perfusion: prognosis, risk stratification, and clinical management. Sem Nucl Med. 2014;44(5):344–57.CrossRefGoogle Scholar
  24. 24.
    Jamali HK, Waqar F, Gerson MC. Cardiac autonomic innervation. J Nucl Cardiol. 2017;24(5):1558–70.CrossRefGoogle Scholar
  25. 25.
    Mountz JM, Patterson CM, Tamber MS. Pediatric epilepsy: neurology, functional imaging, and neurosurgery. Sem Nucl Med. 2017;47(2):170–87.CrossRefGoogle Scholar
  26. 26.
    Nasrallah IM, Wolk DA. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. J Nucl Med. 2014;55(12):2003–11.CrossRefGoogle Scholar
  27. 27.
    Taylor AT. Radionuclides in nephrourology, Part 2: pitfalls and diagnostic applications. J Nucl Med. 2014;55(5):786–98.CrossRefGoogle Scholar
  28. 28.
    Ziessman HA. Hepatobiliary scintigraphy in 2014. J Nucl Med. 2014;55(6):967–75.PubMedGoogle Scholar
  29. 29.
    Palestro CJ. Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med. 2016;57(9):1406–12.CrossRefGoogle Scholar
  30. 30.
    Aboagye EO, Kraeber-Bodere F. Highlights lecture EANM 2016: “Embracing molecular imaging and multi-modal imaging: a smart move for nuclear medicine towards personalized medicine”. Eur J Nucl Med Mol Imaging. 2017;44(9):1559–74.CrossRefGoogle Scholar
  31. 31.
    Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 2017;18(11):e653–706.CrossRefGoogle Scholar
  32. 32.
    Biersack HJ, Hotze A. The clinician and the thyroid. Eur J Nucl Med. 1991;18(9):761–78.CrossRefGoogle Scholar
  33. 33.
    Smith TJ, Hegedus L. Graves’ disease. N Engl J Med. 2016;375(16):1552–65.Google Scholar
  34. 34.
    Yordanova A, Eppard E, Kurpig S, Bundschuh RA, Schonberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8.CrossRefGoogle Scholar
  35. 35.
    Divgi C. Targeted systemic radiotherapy of pheochromocytoma and medullary thyroid cancer. Sem Nucl Med. 2011;41(5):369–73.CrossRefGoogle Scholar
  36. 36.
    Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–60.CrossRefGoogle Scholar
  37. 37.
    Pandit-Taskar N, Hamlin PA, Reyes S, Larson SM, Divgi CR. New strategies in radioimmunotherapy for lymphoma. Curr Oncol Rep. 2003;5(5):364–71.CrossRefGoogle Scholar
  38. 38.
    Mankoff DA, Pryma DA. The contribution of physics to Nuclear Medicine: physicians’ perspective on future directions. EJNMMI Phys. 2014;1(1):5.CrossRefGoogle Scholar
  39. 39.
    Bhargava R, Madabhushi A. Emerging themes in image informatics and molecular analysis for digital pathology. Annu Rev Biomed Eng. 2016;18:387–412.CrossRefGoogle Scholar
  40. 40.
    Mankoff DA, Farwell MD, Clark AS, Pryma DA. Making molecular imaging a clinical tool for precision oncology: a review. JAMA Oncol. 2017;3(5):695–701.CrossRefGoogle Scholar
  41. 41.
    Khandani AH, Wahl RL. Applications of PET in liver imaging. Radiol Clin N Am. 2005;43(5):849–60, vii.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyHospital of the University of Pennsylvania, University of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations