Advertisement

Constraint-Based Framework for Reasoning with Differential Equations

  • Julien Alexandre dit Sandretto
  • Alexandre Chapoutot
  • Olivier Mullier
Chapter

Abstract

An extension of constraint satisfaction problems with differential equations is proposed. Reasoning with differential equations is mandatory to analyze or verify dynamical systems, such as cyber-physical ones. A constraint-based framework is presented to model a wider class of problems based on logical combination of high-level properties. In addition, the complete correctness is verified using a set-membership approach in this framework. Finally, examples are given to demonstrate the benefits of the presented framework.

Notes

Acknowledgements

This research benefited from the support of the “Chair Complex Systems Engineering – Ecole Polytechnique, THALES, DGA, FX, Dassault Aviation, DCNS Research, ENSTA ParisTech, Télécom ParisTech, Fondation ParisTech, and FDO ENSTA,” and it is also partially funded by DGA MRIS “Safety for Complex Robotic Systems.”

References

  1. 1.
    F. Benhamou, D. McAllester, P. Van Hentenryck, CLP (intervals) revisited. Technical Report, Providence (1994)Google Scholar
  2. 2.
    O. Bouissou, A. Chapoutot, S. Mimram, HySon: precise simulation of hybrid systems with imprecise inputs, in IEEE Rapid System Prototyping (2012)Google Scholar
  3. 3.
    G. Chabert, L. Jaulin, Contractor programming. Artif. Intell. 173(11), 1079–1100 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    X. Chen, E. Ábrahám, S. Sankaranarayanan, Flow*: an analyzer for non-linear hybrid systems, in Proceedings of the International Conference on Computer Aided Verification (Springer, Berlin, 2013), pp. 258–263Google Scholar
  5. 5.
    X. Chen, S. Sankaranarayanan, E. Ábrahám, Under-approximate flowpipes for non-linear continuous systems, in Proceedings of the Conference on Formal Methods in Computer-Aided Design (FMCAD Inc., Austin, 2014), pp. 59–66Google Scholar
  6. 6.
    J. Cruz, P. Barahona, Constraint satisfaction differential problems, in Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 2833 (Springer, Berlin, 2003), pp. 259–273CrossRefGoogle Scholar
  7. 7.
    J. Cruz, P. Barahona, Constraint reasoning over differential equations. Appl. Numer. Anal. Comput. Math. 1(1), 140–154 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    L.H. de Figueiredo, J. Stolfi, Self-validated numerical methods and applications. Brazilian Mathematics Colloquium Monographs. IMPA/CNPq, Rio de Janeiro (1997)Google Scholar
  9. 9.
    J.A. dit Sandretto, A. Chapoutot, DynIBEX: a differential constraint library for studying dynamical systems, in Conference on Hybrid Systems: Computation and Control (2016). PosterGoogle Scholar
  10. 10.
    J.A. dit Sandretto, A. Chapoutot, Validated explicit and implicit Runge-Kutta methods. Reliab. Comput. 22, 56–77 (2016)Google Scholar
  11. 11.
    J.A. dit Sandretto, A. Chapoutot, Validated simulation of differential algebraic equations with Runge-Kutta methods. Reliab. Comput. 22, 56–77 (2016)Google Scholar
  12. 12.
    J.A. dit Sandretto, A. Chapoutot, O. Mullier, Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis, in 2nd International Workshop on Synthesis of Complex Parameters, OpenAccess Series in Informatics, vol. 44, pp. 91–102. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  13. 13.
    J.A. dit Sandretto, A. Chapoutot, O. Mullier, Formal verification of robotic behaviors in presence of bounded uncertainties. J. Softw. Eng. Robot. 8(1), 78–88 (2017)Google Scholar
  14. 14.
    D. Eveillard, D. Ropers, H. De Jong, C. Branlant, A. Bockmayr, A multi-scale constraint programming model of alternative splicing regulation. Theor. Comput. Sci. 325(1), 3–24 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Gajda, M. Jankowska, A. Marciniak, B. Szyszka, A survey of interval Runge–Kutta and multistep methods for solving the IVP, in Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 4967 (Springer, Berlin, 2008), pp. 1361–1371Google Scholar
  16. 16.
    A. Goldsztejn, W. Hayes, Rigorous inner approximation of the range of functions, in 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (2006), p. 19Google Scholar
  17. 17.
    A. Goldsztejn, L. Jaulin, Inner approximation of the range of vector-valued functions. Reliab. Comput. 14, 1–23 (2010)MathSciNetGoogle Scholar
  18. 18.
    A. Goldsztejn, O. Mullier, D. Eveillard, H. Hosobe, Including ODE based constraints in the standard CP framework, in Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 6308 (Springer, Berlin, 2010), pp. 221–235Google Scholar
  19. 19.
    E. Goubault, S. Putot, Under-approximations of computations in real numbers based on generalized affine arithmetic, in Proceedings of the Static Analysis Symposium, vol. 4634. Lecture Notes in Computer Science (Springer, Berlin, 2007), pp. 137–152Google Scholar
  20. 20.
    E. Goubault, S. Putot, Forward inner-approximated reachability of non-linear continuous systems, in Proceedings of the International Conference on Hybrid Systems: Computation and Control (ACM, New York, 2017), pp. 1–10zbMATHGoogle Scholar
  21. 21.
    E. Goubault, O. Mullier, S. Putot, M. Kieffer, Inner approximated reachability analysis, in Proceedings of the International Conference on Hybrid Systems: Computation and Control (ACM, New York, 2014), pp. 163–172zbMATHGoogle Scholar
  22. 22.
    M. Janssen, Y. Deville, P. Van Hentenryck, Multistep filtering operators for ordinary differential equations, in Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 1713 (Springer, Berlin, 1999), pp. 246–260CrossRefGoogle Scholar
  23. 23.
    L. Jaulin, E. Walter, Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis (Springer, Berlin, 2001)CrossRefGoogle Scholar
  25. 25.
    E. Kaucher, Interval Analysis in the Extended Interval Space IR (Springer, Berlin, 1980), pp. 33–49zbMATHGoogle Scholar
  26. 26.
    Y. Lebbah, O. Lhomme, Accelerating filtering techniques for numeric CSPs. J. Artif. Intell. 139(1), 109–132 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.J. Lohner, Enclosing the solutions of ordinary initial and boundary value problems, in Computer Arithmetic (B.G. Teubner, Stuttgart, 1987), pp. 255–286Google Scholar
  28. 28.
    R.E. Moore, Interval Analysis. Series in Automatic Computation (Prentice Hall, Englewood Cliffs, 1966)Google Scholar
  29. 29.
    N.S. Nedialkov, K. Jackson, G. Corliss, Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)MathSciNetzbMATHGoogle Scholar
  30. 30.
    A. Rauh, M. Brill, C. GüNther, A novel interval arithmetic approach for solving differential-algebraic equations with ValEncIA-IVP. Int. J. Appl. Math. Comput. Sci. 19(3), 381–397 (2009)CrossRefGoogle Scholar
  31. 31.
    F. Rossi, P. Van Beek, T. Walsh, Handbook of Constraint Programming (Elsevier, Amsterdam, 2006)zbMATHGoogle Scholar
  32. 32.
    M. Rueher, Solving continuous constraint systems, in International Conference on Computer Graphics and Artificial Intelligence (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Julien Alexandre dit Sandretto
    • 1
  • Alexandre Chapoutot
    • 1
  • Olivier Mullier
    • 1
  1. 1.ENSTA ParisTechUniversité Paris-SaclayPalaiseau CedexFrance

Personalised recommendations