Advertisement

TRAJEDI: Trajectory Dissimilarity

  • Kenrick Fernande
  • Pedram Gharani
  • Vineet Raghu
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 186)

Abstract

The vast increase in our ability to obtain and store trajectory data necessitates trajectory analytics techniques to extract useful information from this data. In fact, trajectory analysis is an essential function in intelligent transportation systems (ITS) and by applying it for the spatial trajectory data, a wide range of transportation problems can be solved. Pair-wise distance functions are a foundation building block for common operations on trajectory datasets including constrained SELECT queries, k-nearest neighbors, and similarity and diversity algorithms. The accuracy and performance of these operations depend heavily on the speed and accuracy of the underlying trajectory distance function, which is in turn affected by trajectory calibration. Current methods either require calibrated data or perform calibration of the entire relevant dataset first, which is expensive and time consuming for large datasets. We present TRAJEDI, a calibration aware pair-wise distance calculation scheme that outperforms naive approaches while preserving accuracy. We also provide analyses of parameter tuning to trade off between speed and accuracy. Our scheme is usable with any diversity, similarity or k-nearest neighbor algorithm.

References

  1. 1.
    Amini, M. H., Boroojeni, K. G., Iyengar, S., Blaabjerg, F., Pardalos, P. M., & Madni, A. M. (2018). A panorama of future interdependent networks: From intelligent infrastructures to smart cities. In Sustainable interdependent networks (pp. 1–10). Cham: Springer.CrossRefGoogle Scholar
  2. 2.
    Amini, M. H., Boroojeni, K. G., Iyengar, S., Pardalos, P. M., Blaabjerg, F., & Madni, A. M. (2018). Sustainable interdependent networks: From theory to application. Cham: Springer.CrossRefGoogle Scholar
  3. 3.
    Bao, J., Zheng, Y., & Mokbel, M. F. (2012). Location-based and preference-aware recommendation using sparse geo-social networking data. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems (pp. 199–208). New York: ACM.Google Scholar
  4. 4.
    Bogorny, V., Kuijpers, B., & Alvares, L. O. (2009). ST-DMQL: A semantic trajectory data mining query language. International Journal of Geographical Information Science, 23(10), 1245–1276.CrossRefGoogle Scholar
  5. 5.
    Chen, L., Özsu, M. T., & Oria, V. (2005). Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (pp. 491–502). New York: ACM.CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Shen, H. T., & Zhou, X. (2011). Discovering popular routes from trajectories. In 2011 IEEE 27th International Conference on Data Engineering (ICDE) (pp. 900–911). Piscataway: IEEE.CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Shen, H. T., Zhou, X., Zheng, Y., & Xie, X. (2010). Searching trajectories by locations: An efficiency study. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data (pp. 255–266). New York: ACM.CrossRefGoogle Scholar
  8. 8.
    Gharani, P., & Karimi, H. A. (2017). Context-aware obstacle detection for navigation by visually impaired. Image and Vision Computing, 64, 103–115.CrossRefGoogle Scholar
  9. 9.
    Gharani, P., Suffoletto, B., Chung, T., & Karimi, H. A. (2017). An artificial neural network for movement pattern analysis to estimate blood alcohol content level. Sensors, 17(12), 2897.CrossRefGoogle Scholar
  10. 10.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., et al. (2011). Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal: The International Journal on Very Large Data Bases, 20(5), 695–719.CrossRefGoogle Scholar
  11. 11.
    Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007). Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 330–339). New York: ACM.CrossRefGoogle Scholar
  12. 12.
    Javadi, S. H. S., Gharani, P., & Khadivi, S. (2018). Detecting community structure in dynamic social networks using the concept of leadership. In Sustainable interdependent networks (pp. 97–118). Cham: Springer.CrossRefGoogle Scholar
  13. 13.
    Liu, S., & Meng, X. (2015). A location-based business information recommendation algorithm. Mathematical Problems in Engineering, 2015, Article ID 345480.Google Scholar
  14. 14.
    Mohammadi, A., & Dehghani, M. J. (2014). Spectrum allocation using fuzzy logic with optimal power in wireless network. In 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE) (pp. 532–536). Piscataway: IEEE.CrossRefGoogle Scholar
  15. 15.
    Potamias, M., Patroumpas, K., & Sellis, T. (2006). Sampling trajectory streams with spatiotemporal criteria. In 2006 18th International Conference on Scientific and Statistical Database Management (pp. 275–284). Piscataway: IEEE.Google Scholar
  16. 16.
    Rao, K. V., Govardhan, A., & Rao, K. C. (2012). Spatiotemporal data mining: Issues, tasks and applications. International Journal of Computer Science and Engineering Survey, 3(1), 39.CrossRefGoogle Scholar
  17. 17.
    Shen, Y., Kwan, M.-P., & Chai, Y. (2013). Investigating commuting flexibility with GPS data and 3d geovisualization: A case study of Beijing, China. Journal of Transport Geography, 32, 1–11.CrossRefGoogle Scholar
  18. 18.
    Su, H., Zheng, K., Huang, J., Wang, H., & Zhou, X. (2015). Calibrating trajectory data for spatio-temporal similarity analysis. The VLDB Journal, 24(1), 93–116.CrossRefGoogle Scholar
  19. 19.
    Suffoletto, B., Gharani, P., Chung, T., & Karimi, H. (2018). Using phone sensors and an artificial neural network to detect gait changes during drinking episodes in the natural environment. Gait & Posture, 60, 116–121.CrossRefGoogle Scholar
  20. 20.
    Vlachos, M., Kollios, G., & Gunopulos, D. (2002). Discovering similar multidimensional trajectories. In 2002 Proceedings 18th International Conference on Data Engineering (pp. 673–684). Piscataway: IEEE.Google Scholar
  21. 21.
    Wang, Y., Zheng, Y., & Xue, Y. (2014). Travel time estimation of a path using sparse trajectories. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 25–34). New York: ACM.Google Scholar
  22. 22.
    Yin, Z., Cao, L., Han, J., Luo, J., & Huang, T. S. (2011). Diversified trajectory pattern ranking in geo-tagged social media. In SDM (pp. 980–991). Philadelphia: SIAM.Google Scholar
  23. 23.
    Yu, X., Pu, K. Q., & Koudas, N. (2005). Monitoring k-nearest neighbor queries over moving objects. In Proceedings 21st International Conference on Data Engineering. ICDE 2005 (pp. 631–642). Piscataway: IEEE.Google Scholar
  24. 24.
    Yuan, J., Zheng, Y., Xie, X., & Sun, G. (2011). Driving with knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 316–324). New York: ACM.CrossRefGoogle Scholar
  25. 25.
    Yuan, J., Zheng, Y., Xie, X., & Sun, G. (2013). T-drive: Enhancing driving directions with taxi drivers’ intelligence. IEEE Transactions on Knowledge and Data Engineering, 25(1), 220–232.CrossRefGoogle Scholar
  26. 26.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., et al. (2010). T-drive: Driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 99–108). New York: ACM.Google Scholar
  27. 27.
    Yuan, J., Zheng, Y., Zhang, L., Xie, X., & Sun, G. (2011). Where to find my next passenger. In Proceedings of the 13th International Conference on Ubiquitous Computing (pp. 109–118). New York: ACM.Google Scholar
  28. 28.
    Yuan, N. J., Zheng, Y., & Xie, X. (2012). Segmentation of urban areas using road networks. MSR-TR-2012-65, Tech. Rep.Google Scholar
  29. 29.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., & Ma, W.-Y. (2008). Understanding mobility based on GPS data. In Proceedings of the 10th International Conference on Ubiquitous Computing (pp. 312–321). New York: ACM.Google Scholar
  30. 30.
    Zheng, Y., Liu, L., Wang, L., & Xie, X. (2008). Learning transportation mode from raw GPS data for geographic applications on the web. In Proceedings of the 17th International Conference on World Wide Web (pp. 247–256). New York: ACM.CrossRefGoogle Scholar
  31. 31.
    Zheng, Y., Liu, Y., Yuan, J., & Xie, X. (2011). Urban computing with taxicabs. In Proceedings of the 13th International Conference on Ubiquitous Computing (pp. 89–98). New York: ACM.Google Scholar
  32. 32.
    Zheng, Y., Xie, X., & Ma, W.-Y. (2010). Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data(base) Engineering Bulletin, 33(2), 32–39.Google Scholar
  33. 33.
    Zheng, Y., & Zhou, X. (2011). Computing with spatial trajectories. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenrick Fernande
    • 1
  • Pedram Gharani
    • 2
  • Vineet Raghu
    • 1
  1. 1.School of Computing and Information, Department of Computer ScienceUniversity of PittsburghPittsburghUSA
  2. 2.School of Computing and Information, Department of Informatics and Networked SystemsUniversity of PittsburghPittsburghUSA

Personalised recommendations