Advertisement

A Panorama of Interdependent Power Systems and Electrified Transportation Networks

  • M. Hadi AminiEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 186)

Abstract

There has been an emerging concern regarding the optimal operation of power and transportation networks. In this chapter, a big picture of emerging challenges in the interdependent power systems and electrified transportation networks is introduced. The introduced networks will collaborate together to achieve sustainability in terms of operating in a more intelligent and efficient manner, providing more realistic models of interdependent networks, and modernizing the conventional frameworks. Further, an example of electric vehicle routing problem is provided to identify various effective networks in the broader context of sustainable interdependent networks.

In the second volume of Sustainable Interdependent Networks book, we focus on the interdependencies of power and transportation networks, optimization methods to deal with the computational complexity of them, and their role in future smart cities. In a related context, we further investigate other influential networks, such as communication networks. The considerable scale of such networks, due to the large number of buses in smart power grids and the increasing number of electric vehicles in transportation networks, brings a wide variety of computational complexity and optimization challenges. Although the independent optimization of these networks leads to locally optimum operation points, there is an emerging need to move towards obtaining the globally optimum operation point while satisfying the constraints of each network.

Keywords

Power systems Transportation Electrification Sustainable Interdependent Networks Intelligent transportation systems Interdependency Smart city Electric vehicles Interconnected networks Optimization Energy networks Complex networks Large-scale Information technology Societal networks Communication infrastructure Charging station Electrified transportation networks Advanced metering infrastructure Information security Location privacy 

References

  1. 1.
    Amini, M. H., Boroojeni, K. G., Iyengar, S. S., Pardalos, P., Blaabjerg, F., & Madni, A. (2018). Sustainable interdependent networks: From theory to application. Cham: Springer.CrossRefGoogle Scholar
  2. 2.
    Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems, 21(6), 11–25.CrossRefGoogle Scholar
  3. 3.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., & Setola, R. (2008). Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4(1-2), 63–79.CrossRefGoogle Scholar
  4. 4.
    Amini, M. H., Boroojeni, K. G., Iyengar, S. S., Pardalos, P., Blaabjerg, F., & Madni, A. (Eds.). (2018). A panorama of future interdependent networks: From intelligent infrastructures to smart cities. In Sustainable interdependent networks (pp. 1–10). Springer, Cham.Google Scholar
  5. 5.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.CrossRefGoogle Scholar
  6. 6.
    Hafedh, C., Nam, T., Walker, S., Ramon Gil-Garcia, J., Mellouli, S., Nahon, K., et al. (2012). Understanding smart cities: An integrative framework. In 45th Hawaii International Conference on System Sciences (HICSS) (pp. 2289–2297). Maui: IEEE.Google Scholar
  7. 7.
    Newman, J. (2018). Calling for a next-generation sustainability framework at MIT. In M. H. Amini, K. G. Boroojeni, S. S. Iyengar, P. M. Pardalos, F. Blaabjerg, & A. M. Madni (Eds.), Sustainable interdependent networks (pp. 13–20). Cham: Springer.CrossRefGoogle Scholar
  8. 8.
    Sargolzaei, A., Sargolzaei, A., Abbaspour, A., Al Faruque, M. A., Eddin, A. S., & Yen, K. (2018). Security challenges of networked control systems. In Sustainable interdependent networks (pp. 77–95). Cham: Springer.CrossRefGoogle Scholar
  9. 9.
    Seyed, J. S. H., Gharani, P., & Khadivi, S. (2018). Detecting community structure in dynamic social networks using the concept of leadership. In Sustainable interdependent networks (pp. 97–118). Cham: Springer.Google Scholar
  10. 10.
    Mistani, P., Guittet, A., Poignard, C., & Gibou, F. (2018). A parallel Voronoi-based approach for mesoscale simulations of cell aggregate electropermeabilization. arXiv, 1802, 01781.Google Scholar
  11. 11.
    Gharani, P., & Delavar, M. R. (2008). Formalization of a knowledge-based approach for representing and learning spatial structure of a large-scale space. World Applied Sciences Journal, 3(1), 119–126.Google Scholar
  12. 12.
    Gharani, P., Stewart, K., & Ryan, G. L. (2015). An enhanced approach for modeling spatial accessibility for in vitro fertilization services in the rural Midwestern United States. Applied Geography, 64, 12–23.CrossRefGoogle Scholar
  13. 13.
    Morales, D. X., Besanger, Y., & Medina, R. D. (2018). Complex distribution networks: Case study Galapagos Islands. In Sustainable interdependent networks (pp. 251–281). Cham: Springer.CrossRefGoogle Scholar
  14. 14.
    Morales, D. X., Besanger, Y., Sami, S., & Bel, C. A. (2017). Assessment of the impact of intelligent DSM methods in the Galapagos Islands toward a Smart Grid. Electric Power Systems Research, 146, 308–320.CrossRefGoogle Scholar
  15. 15.
    Morales, D. X., Besanger, Y., Alvarez Bel, C., & Medina, R. D. (2016). Impact assessment of new services in the Galapagos low voltage network. In 2016 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA). Morelia: IEEE.Google Scholar
  16. 16.
    Boroojeni, K. G., Amini, M. H., & Iyengar, S. S. (2017). Smart grids: Security and privacy issues. New York: Springer.CrossRefGoogle Scholar
  17. 17.
    Amini, M. H., Jaddivada, R., Hoseinzadeh, B., Mishra, S., & Mozafar, M. R. (2018). Optimal SVC allocation in power systems for loss minimization and voltage deviation reduction. In Sustainable interdependent networks (pp. 221–232). Cham: Springer.CrossRefGoogle Scholar
  18. 18.
    Shafiee, M., & Ghaderi, J. (2017). A simple congestion-aware algorithm for load balancing in datacenter networks. IEEE/ACM Transactions on Networking, 25(6), 3670–3682.CrossRefGoogle Scholar
  19. 19.
    Khorasani, F. (2018). High performance and scalable graph computation on GPUs. In M. Amini, K. Boroojeni, S. Iyengar, P. Pardalos, F. Blaabjerg, & A. Madni (Eds.), Sustainable interdependent networks (pp. 67–75). Cham: Springer.CrossRefGoogle Scholar
  20. 20.
    Khorasani, F., Vora, K., Gupta, R., & Bhuyan, L. N. (2014). CuSha: Vertex-centric graph processing on GPUs. In Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing (pp. 239–252). Vancouver: ACM.Google Scholar
  21. 21.
    Khorasani, F., Rowe, B., Gupta, R., & Bhuyan, L. N. (2016). Eliminating intra-warp load imbalance in irregular nested patterns via collaborative task engagement. In Parallel and Distributed Processing Symposium, 2016 IEEE International (pp. 524–533). Chicago: IEEE.CrossRefGoogle Scholar
  22. 22.
    Khorasani, F., Vora, K., Gupta, R., & Bhuyan, L. N. (2017). Enabling work-efficiency for high performance vertex-centric graph analytics on GPUs. In Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms (p. 11). Denver: ACM.Google Scholar
  23. 23.
    Khorasani, F., Gupta, R., & Bhuyan, L. N. (2015). Scalable SIMD-efficient graph processing on GPUs. In 2015 International Conference on Parallel Architecture and Compilation (PACT) (pp. 39–50). San Francisco: IEEE.CrossRefGoogle Scholar
  24. 24.
    Amini, M. H., Jaddivada, R., Mishra, S., & Karabasoglu, O. (2015). Distributed security constrained economic dispatch. In IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA) (pp. 1–6). Bangkok: IEEE.Google Scholar
  25. 25.
    Mohammadi, A., Mehrtash, M., & Kargarian, A. (2018). Diagonal quadratic approximation for decentralized collaborative TSO+DSO optimal power flow. IEEE Transactions on Smart Grid.  https://doi.org/10.1109/TSG.2018.2796034.
  26. 26.
    Mohammadi, J., Hug, G., & Kar, S. (2016). A fully distributed cooperative charging approach for plug-in electric vehicles. IEEE Transactions on Smart Grid.  https://doi.org/10.1109/TSG.2016.2633416.
  27. 27.
    Amini, M. H., Bahrami, S., Kamyab, F., Mishra, S., Jaddivada, R., et al. (2018). Decomposition methods for distributed optimal power flow: Panorama and case studies of the DC model. In Classical and Recent Aspects of Power System Optimization (pp. 137–155).CrossRefGoogle Scholar
  28. 28.
    Molzahn, D. K., Dörfler, F., Sandberg, H., Low, S. H., Chakrabarti, S., Baldick, R., & Lavaei, J. (2017). A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grid, 8(6), 2941–2962.CrossRefGoogle Scholar
  29. 29.
    Amini, M. H., Nabi, B., & Haghifam, M.-R. (2013). Load management using multi-agent systems in smart distribution network. In Power and Energy Society General Meeting (PES). Vancouver: IEEE.Google Scholar
  30. 30.
    Amini, M. H., McNamara, P., Weng, P., Karabasoglu, O., & Xu, Y. (2017). Hierarchical electric vehicle charging aggregator strategy using Dantzig-Wolfe decomposition. IEEE Design and Test Magazine.  https://doi.org/10.1109/MDAT.2017.2759505.
  31. 31.
    Boroojeni, K. G., Amini, M. H., & Iyengar, S. S. (2017). End-user data privacy. In Smart grids: Security and privacy issues (pp. 85–92). Berlin: Springer International Publishing.CrossRefGoogle Scholar
  32. 32.
    Heydari, J., & Tajer, A. Quickest localization of anomalies in power grids: A stochastic graphical framework. IEEE Transactions on Smart Grid.  https://doi.org/10.1109/TSG.2017.2666543.
  33. 33.
    Boroojeni, K. G., Amini, M. H., & Iyengar, S. S. (2017). Mobile user data privacy. In Smart grids: Security and privacy issues (pp. 93–110). Berlin: Springer International Publishing.CrossRefGoogle Scholar
  34. 34.
    Amini, M. H., Rahmani, M., Boroojeni, K. G., Atia, G., Iyengar, S. S., & Karabasoglu, O. (2016). Sparsity-based error detection in DC power flow state estimation. In IEEE International Electro/Information Technology Conference (EIT 2016). Grand Forks: IEEE.Google Scholar
  35. 35.
    Najafi, S., Talari, S., Gazafroudi, A. S., Shafie-khah, M., Corchado, J. M., & Catalão, J. P. S. (2018). Decentralized control of DR using a multi-agent method. In Sustainable interdependent networks (pp. 233–249). Cham: Springer.CrossRefGoogle Scholar
  36. 36.
    Shafie-khah, M., Osório, G. J., Catalão, J. P. S. (2017, August 27–September 1). A decentralized privacy-based electricity market scheme for responsive demands. In Proceedings of the 10th Bulk Power Systems Dynamics and Control Symposium—IREP’2017, Espinho, Portugal.Google Scholar
  37. 37.
    Shafie-khah, M., & Catalão, J. P. S. (2015). A stochastic multi-layer agent-based model to study electricity market participants behavior. IEEE Transactions on Power Systems, 30(2), 867–881.CrossRefGoogle Scholar
  38. 38.
    Bahrami, S., & Amini, M. H. (2018). A decentralized trading algorithm for an electricity market with generation uncertainty. Applied Energy, 218, 520–532.CrossRefGoogle Scholar
  39. 39.
    Rahman, I., & Mohamad-Saleh, J. (2018). Plug-in electric vehicle charging optimization using bio-inspired computational intelligence methods. In Sustainable interdependent networks (pp. 135–147). Cham: Springer.CrossRefGoogle Scholar
  40. 40.
    Rahman, I., Vasant, P., Singh, B. S. M., & Abdullah-Al-Wadud, M. (2015). Swarm intelligence-based optimization for PHEV charging stations. In Handbook of research on swarm intelligence in engineering (pp. 374–405). Hershey: IGI Global.CrossRefGoogle Scholar
  41. 41.
    Vasant, P. M., Rahman, I., Singh, B. S. M., & Abdullah-Al-Wadud, M. (2016). Optimal power allocation scheme for plug-in hybrid electric vehicles using swarm intelligence techniques. Cogent Engineering, 3(1).  https://doi.org/10.1080/23311916.2016.1203083.
  42. 42.
    Adnan, N., Nordin, S. M., & Althawadi, O. M. (2018). Barriers towards widespread adoption of V2G technology in smart grid environment: From laboratories to commercialization. In Sustainable interdependent networks (pp. 121–134). Berlin: Springer.CrossRefGoogle Scholar
  43. 43.
    Rahman, I., Vasant, P. M., Singh, B. S. M., Abdullah-Al-Wadud, M., & Adnan, N. (2016). Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews, 58, 1039–1047.CrossRefGoogle Scholar
  44. 44.
    Adnan, N., Nordin, S. M., Rahman, I., & Rasli, A. M. (2017). A new era of sustainable transport: An experimental examination on forecasting adoption behavior of EVs among Malaysian consumer. Transpiration Research Part A Policy Practice, 103, 279–295.CrossRefGoogle Scholar
  45. 45.
    Adnan, N., Nordin, S. M., & Rahman, I. (2017). Adoption of PHEV/EV in Malaysia: A critical review on predicting consumer behaviour. Renewable and Sustainable Energy Reviews, 72, 849–862.CrossRefGoogle Scholar
  46. 46.
    Adnan, N., Nordin, S. M., Rahman, I., Vasant, P., & Noor, M. A. (2017). An overview of electric vehicle technology: A vision towards sustainable. In T. Essaki (Ed.), Green marketing and environmental responsibility in modern corporations (p. 198). Hershey: IGI Global.CrossRefGoogle Scholar
  47. 47.
    Adnan, N., Nordin, S. M., Rahman, I., Vasant, P. M., & Noor, A. (2017). A comprehensive review on theoretical framework-based electric vehicle consumer adoption research. International Journal of Energy Research, 41(3), 317–335.CrossRefGoogle Scholar
  48. 48.
    Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2018). Estimation of large-scale solar rooftop PV potential for smart grid integration: A methodological review. In Sustainable interdependent networks (pp. 173–219). Cham: Springer.CrossRefGoogle Scholar
  49. 49.
    Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2017). Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy, 141, 278–296.CrossRefGoogle Scholar
  50. 50.
    Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2018). Large-scale rooftop solar photovoltaic technical potential estimation using random forests. Applied Energy, 217, 189–211.CrossRefGoogle Scholar
  51. 51.
    Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2017, October). Building rooftop classification using random forests for large-scale PV deployment. In Earth resources and environmental remote Sensing/GIS Applications VIII (Vol. 10428, p. 1042806). International Society for Optics and Photonics.Google Scholar
  52. 52.
    Khazraeian, S., Hadi, M., & Xiao, Y. (2016, January). Detection of freeway incidents based on vehicle acceleration measurements using connected vehicle data. In Proceedings of the 95th Annual Meeting of the Transportation Research Board, Washington, D.C. Google Scholar
  53. 53.
    Khazraeian, S., Hadi, M., & Xiao, Y. (2017). Safety impacts of queue warning in a connected vehicle environment. Transportation Research Record: Journal of the Transportation Research Board, 2621, 31–37.CrossRefGoogle Scholar
  54. 54.
    Amini, M. H., & Karabasoglu, O. (2018). Optimal operation of interdependent power systems and electrified transportation networks. Energies Journal, 11, 196.CrossRefGoogle Scholar
  55. 55.
    Nasri, A. H., Abdollahi, A., Rashidinejad, M., & Amini, H. M. (2018). Probabilistic-possibilistic model for a parking lot in the smart distribution network expansion planning. IET Generation, Transmission & Distribution, 12(13), 3363–3374.CrossRefGoogle Scholar
  56. 56.
    Amini, M. H., Moghaddam, M. P., & Karabasoglu, O. (2017). Simultaneous allocation of electric vehicles’ parking lots and distributed renewable resources in smart power distribution networks. Sustainable Cities and Society, 28, 332–342.CrossRefGoogle Scholar
  57. 57.
    Chaovalitwongse, W., Pardalos, P. M., & Prokopyev, O. A. (2004). A new linearization technique for multi-quadratic 0–1 programming problems. Operations Research Letters, 32(6), 517–522.MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Prokopyev, O. A., Huang, H.-X., & Pardalos, P. M. (2005). On complexity of unconstrained hyperbolic 0–1 programming problems. Operations Research Letters, 33(3), 312–318.MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Veremyev, A., Prokopyev, O. A., & Pasiliao, E. L. (2014). An integer programming framework for critical elements detection in graphs. Journal of Combinatorial Optimization, 28(1), 233–273.MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153(1), 235–256.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Bard, J. F. (2013). Practical bilevel optimization: Algorithms and applications (Vol. 30). Berlin: Springer Science & Business Media.zbMATHGoogle Scholar
  62. 62.
    Campêlo, M., & Scheimberg, S. (2000). A note on a modified simplex approach for solving bilevel linear programming problems. European Journal of Operational Research, 126(2), 454–458.MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Beheshti, B., Özaltın, O. Y., Hosein Zare, M., & Prokopyev, O. A. (2015). Exact solution approach for a class of nonlinear Bilevel knapsack problems. Journal of Global Optimization, 61(2), 291–310.MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Beheshti, B., Prokopyev, O. A., & Pasiliao, E. L. (2016). Exact solution approaches for bilevel assignment problems. Computational Optimization and Applications, 64(1), 215–242.MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13(5), 1194–1217.MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Deb, K., & Sinha, A. (2009). Solving bilevel multi-objective optimization problems using evolutionary algorithms. In International conference on evolutionary multi-criterion optimization. Berlin: Springer.Google Scholar
  67. 67.
    Gholami, A., Shekari, T., Amirioun, M. H., Aminifar, F., Amini, M. H., & Sargozalei, A. (2018). Toward a consensus on the definition and taxonomy of power system resilience. IEEE Access, 6, 32035–32053.CrossRefGoogle Scholar
  68. 68.
    Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140, 378–390.CrossRefGoogle Scholar
  69. 69.
    Mozafar, M. R., Amini, M. H., & Moradi, M. H. (2018). Innovative appraisement of smart grid operation considering large-scale integration of electric vehicles enabling V2G and G2V systems. Electric Power Systems Research, 154, 245–256.CrossRefGoogle Scholar
  70. 70.
    Alizadeh, M., Wai, H., Goldsmith, A., & Scaglione, A. (2018). Retail and wholesale electricity pricing considering electric vehicle mobility. IEEE Transactions on Control of Network Systems.  https://doi.org/10.1109/TCNS.2018.2809960.
  71. 71.
    Deilami, S., Masoum, A. S., Moses, P. S., & Masoum, M. A. S. (2011). Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Transactions on Smart Grid, 2(3), 456–467.CrossRefGoogle Scholar
  72. 72.
    Amini, M. H., Jamei, M., Lashway, C. R., Sarwat, A. I., Yen, K. K., Domijan, A., et al. (2015). Plug-in electric vehicle owner behavior study using fuzzy systems. International Journal of Power and Energy Systems, 35(2).Google Scholar
  73. 73.
    Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Transactions on Power Systems, 25(1), 371–380.CrossRefGoogle Scholar
  74. 74.
    Mwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., & Jung, J. W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews, 34, 501–516.CrossRefGoogle Scholar
  75. 75.
    Amini, M. H., Karabasoglu, O., Ilić, M. D., Boroojeni, K. G., & Iyengar, S. S. (2015). ARIMA-based demand forecasting method considering probabilistic model of electric vehicles’ parking lots. In Power & Energy Society General Meeting, 2015 IEEE (pp. 1–5). Denver: IEEE.Google Scholar
  76. 76.
    Sovacool, B. K., Noel, L., Axsen, J., & Kempton, W. (2018). The neglected social dimensions to a vehicle-to-grid (V2G) transition: A critical and systematic review. Environmental Research Letters, 13(1), 013001.CrossRefGoogle Scholar
  77. 77.
    Thomas, D., Deblecker, O., & Ioakimidis, C. S. (2018). Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule. Applied Energy, 210, 1188–1206.CrossRefGoogle Scholar
  78. 78.
    Pirouzi, S., Aghaei, J., Vahidinasab, V., Niknam, T., & Khodaei, A. (2018). Robust linear architecture for active/reactive power scheduling of EV integrated smart distribution networks. Electric Power Systems Research, 155, 8–20.CrossRefGoogle Scholar
  79. 79.
    Wang, S., Dong, Z. Y., Luo, F., Meng, K., & Zhang, Y. (2018). Stochastic collaborative planning of electric vehicle charging stations and power distribution system. IEEE Transactions on Industrial Informatics, 14(1), 321–331.CrossRefGoogle Scholar
  80. 80.
    Ravichandran, A., Sirouspour, S., Malysz, P., & Emadi, A. (2018). A chance-constraints-based control strategy for microgrids with energy storage and integrated electric vehicles. IEEE Transactions on Smart Grid, 9(1), 346–359.CrossRefGoogle Scholar
  81. 81.
    Abeywardana, D. B. W., Acuna, P., Hredzak, B., Aguilera, R. P., & Agelidis, V. G. (2018). Single-phase boost inverter-based electric vehicle charger with integrated vehicle to grid reactive power compensation. IEEE Transactions on Power Electronics, 33(4), 3462–3471.CrossRefGoogle Scholar
  82. 82.
    Shi, Y., Tuan, H. D., Savkin, A. V., Duong, T. Q., & Poor, H. V. (2018). Model predictive control for smart grids with multiple electric-vehicle charging stations. IEEE Transactions on Smart Grid.  https://doi.org/10.1109/TSG.2017.2789333.
  83. 83.
    Nan, S., Zhou, M., & Li, G. (2018). Optimal residential community demand response scheduling in smart grid. Applied Energy, 210, 1280–1289.CrossRefGoogle Scholar
  84. 84.
    Luo, C., Huang, Y.-F., & Gupta, V. (2018). Stochastic dynamic pricing for EV charging stations with renewable integration and energy storage. IEEE Transactions on Smart Grid, 9(2), 1494–1505.CrossRefGoogle Scholar
  85. 85.
    Neyestani, N., et al. (2018). Effects of pev traffic flows on the operation of parking lots and charging stations. IEEE Transactions on Smart Grid, 9(2), 1521–1530.CrossRefGoogle Scholar
  86. 86.
    Zhu, X., Xia, M., & Chiang, H.-D. (2018). Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources. Applied Energy, 210, 936–943.CrossRefGoogle Scholar
  87. 87.
    Amini, M. H., Boroojeni, K. G., Wang, C. J., Nejadpak, A., Iyengar, S. S., & Karabasoglu, O. (2016). Effect of electric vehicle parking lots’ charging demand as dispatchable loads on power systems loss. In Electro Information Technology (EIT), 2016 IEEE International Conference on (pp. 0499–0503). Grand Forks: IEEE.Google Scholar
  88. 88.
    Mohammadi, E., Fadaeinedjad, R., & Rashidinejad, M. (2018). Optimal placement and sizing of PV systems and electric parking lots considering reactive power capability and load variation. International Journal of Sustainable Energy, 37, 1–14.  https://doi.org/10.1080/14786451.2018.1494597.CrossRefGoogle Scholar
  89. 89.
    Kosmanos, D., Maglaras, L., Mavrovouniotis, M., Moschoyiannis, S., Argyriou, A., Maglaras, A., et al. (2018). Route optimization of electric vehicles based on dynamic wireless charging. IEEE Access, 6, 42551–42565.CrossRefGoogle Scholar
  90. 90.
    Mohsenzadeh, A., Pazouki, S., Ardalan, S., & Haghifam, M.-R. (2017). Optimal placing and sizing of parking lots including different levels of charging stations in electric distribution networks. International Journal of Ambient Energy, 1–8.Google Scholar
  91. 91.
    Mohsenzadeh, A., Pang, C. Z., Pazouki, S., & Haghifam, M.-R. (2015). Optimal siting and sizing of electric vehicle public charging stations considering smart distribution network reliability. In North American Power Symposium (NAPS), 2015 (pp. 1–6). Charlotte: IEEE.Google Scholar
  92. 92.
    Amini, M. H., & Islam, A. (2014, February). Allocation of electric vehicles’ parking lots in distribution network. In ISGT 2014 (pp. 1–5). Washington, DC: IEEE.Google Scholar
  93. 93.
    Sadati, S. M. B., Moshtagh, J., Shafie-khah, M., Rastgou, A., & Catalão, J. P. S. (2019). Operational scheduling of a smart distribution system considering electric vehicles parking lot: A bi-level approach. International Journal of Electrical Power & Energy Systems, 105, 159–178.CrossRefGoogle Scholar
  94. 94.
    Lam, A. Y. S., Leung, K.-C., & Li, V. O. K. (2017). Vehicular energy network. IEEE Transactions on Transportation Electrification, 3(2), 392–404.CrossRefGoogle Scholar
  95. 95.
    Lam, A. Y. S., Leung, K.-C., & Li, V. O. K. (2015). An electric-vehicle-based supplementary power delivery system. In Smart Grid Communications (SmartGridComm), 2015 IEEE International Conference on (pp. 307–312). Miami: IEEE.CrossRefGoogle Scholar
  96. 96.
    Chen, X., Leung, K. C., Lam, A. Y., & Hill, D. J. (2017, December). A novel online scheduling algorithm for hierarchical vehicle-to-grid system. In GLOBECOM 2017-2017 IEEE Global Communications Conference (pp. 1–6). Singapore: IEEE.Google Scholar
  97. 97.
    Li, Y., Davis, C., Lukszo, Z., & Weijnen, M. (2016). Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications. Applied Energy, 173, 535–554.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations