Impact of Strategic Behaviors of the Electricity Consumers on Power System Reliability

  • Amin Shokri Gazafroudi
  • Miadreza Shafie-khahEmail author
  • Desta Zahlay Fitiwi
  • Sérgio F. Santos
  • Juan Manuel Corchado
  • João P. S. Catalão
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 186)


Over the past few decades, electricity markets have created competitive environments for the participation of different players. Electricity consumers (as end users in power systems) can behave strategically based on their purposes in the markets. Their behaviors induce more uncertainty into the power grid, due to their dynamic load demands. Hence, a power system operator faces more difficulties in maintaining an acceptable level of reliability and security in the system. On the other hand, the strategic behaviors of electricity consumers can be as a double-edged sword in the power grid. There is a group of consumers who are flexible and so can be interrupted at critical time periods and pursue their economic targets in the electricity markets. However, the second group is concerned with electricity demand being provided to them with the desired reliability level. Hence, the decisions of this group of electrical consumers are in conflict with their corresponding demand response programs. According to the above statement, this chapter aims at investigating the impact of strategic behavior of the electrical consumers on power system reliability. In this way, different agents of electricity markets are defined in this chapter which their behavior can impact the market-clearing problem. Energy and reserve are assumed as electricity commodities in this chapter. Thus, a two-stage, day-ahead and real-time, stochastic unit commitment problem is solved to clear energy and reserve simultaneously considering the uncertainty of wind power generations and conventional generation units which impacts the reliability of sustainable power systems.


Simultaneous market clearing Energy flexibility Customer behavior Reliability Demand response Energy economy Stochastic programming Decision-making under uncertainty Operating reserve Wind power integrating Multi-agent systems 



Amin Shokri Gazafroudi and Juan Manuel Corchado acknowledge the support by the European Commission H2020 MSCA-RISE-2014: Marie Sklodowska-Curie project DREAM-GO Enabling Demand Response for short and real-time Efficient and Market Based Smart Grid Operation - An intelligent and real-time simulation approach ref. 641794. Amin Shokri Gazafroudi acknowledges the support by the Ministry of Education of the Junta de Castilla y León and the European Social Fund through a grant from predoctoral recruitment of research personnel associated with the research project “Arquitectura multiagente para la gestión eficaz de redes de energía a través del uso de técnicas de intelligencia artificial” of the University of Salamanca. M.Shafie-khah and J.P.S. Catalão acknowledge the support by FEDER funds through COMPETE 2020 and by Portuguese funds through FCT, under Projects SAICT-PAC/0004/2015 - POCI-01-0145-FEDER-016434, POCI-01-0145-FEDER-006961, UID/EEA/ 50014/2013, UID/CEC/50021/2013, UID/EMS/00151/2013, and 02/SAICT/2017 - POCI-01-0145-FEDER-029803.


  1. 1.
    Amini, M. H., et al, (2013). Load management using multi-agent systems in smart distribution network. IEEE Power and Energy Society General Meeting.Google Scholar
  2. 2.
    Boroojeni, K. G., et al. (2017). Reliability in Smart Grids. In Smart Grids: Security and privacy issues (pp. 19–29). Cham: Springer.CrossRefGoogle Scholar
  3. 3.
    Ahmadi-Khatir, A., Conejo, A. J., & Cherkaoui, R. (2013). Multi-area unit scheduling and reserve allocation under wind power uncertainty. IEEE Transactions on power systems, 29(4), 1701–1710.CrossRefGoogle Scholar
  4. 4.
    Morales, J., Conejo, A., & Perez-Ruiz, J. (2009). Economic valuation of reserves in power systems with high penetration of wind power. IEEE Transactions on Power Systems, 24(2), 900–910.CrossRefGoogle Scholar
  5. 5.
    Mohammadi, A., et al. (2018). Diagonal quadratic approximation for decentralized collaborative TSO+DSO optimal power flow. IEEE Transactions on Smart Grid, 1.
  6. 6.
    Shafie-khah, M., & Catalao, J. P. S. (2015). A stochastic multi-layer agent-based model to study electricity market participants behavior. IEEE Transactions on Power Systems, 30(2), 867–881.CrossRefGoogle Scholar
  7. 7.
    Wang, F., Xu, H., Xu, T., Li, K., Shafie-Khah, M., & Catalao, J. P. (2017). The values of market-based demand response on improving power system reliability under extreme circumstances. Applied Energy, 193, 220–231.CrossRefGoogle Scholar
  8. 8.
    Mishra, C., Singh, S. P., & Rokadia, J. (2015). Optimal power flow in the presence of wind power using modified cuckoo search. IET Generation, Transmission & Distribution, 9(7), 615–626.CrossRefGoogle Scholar
  9. 9.
    Chen, H., Zhang, R., Li, G., Bai, L., & Li, F. (2016). Economic dispatch of wind integrated power systems with energy storage considering composite operating costs. IET Generation, Transmission & Distribution, 10(5), 1294–1303.CrossRefGoogle Scholar
  10. 10.
    Silva, A. L., Sales, W., Manso, L., & Billinton, R. (2010). Long-term probabilistic evaluation of operating reserve requirements with renewable sources. IEEE Transactions on Power Systems, 25, 1.CrossRefGoogle Scholar
  11. 11.
    Mastos, M., Lopes, J., Rosa, M., Ferreira, R., Silva, A., Sales, W., Resend, L., Manso, L., Cabral, P., Ferreira, M., Martins, N., Artiaz, C., Soto, F., & Lopez, R. (2009). Probabilistic evaluation of reserve requirements of generation systems with renewable power sources: The Portuguese and Spanish cases. Electrical Power and Energy Systems, 31, 562–569.CrossRefGoogle Scholar
  12. 12.
    Leite da Silva, A. M., Rosa, M. A., Sales, W. S., & Matos, M. (2011). Long term evaluation of operating reserve with high penetration of renewable energy sources. IEEE Conference, Power and Energy Society General Meeting.Google Scholar
  13. 13.
    Sarwat, A. I., et al. (2016). Weather-based interruption prediction in the smart grid utilizing chronological data. Journal of Modern Power Systems and Clean Energy, 4(2), 308–315.CrossRefGoogle Scholar
  14. 14.
    Shokri Gazafroudi, A., Afshar, K., & Bigdeli, N. (2015). Assessing the operating reserves and costs with considering customer choice and wind power uncertainty in pool-based power market. International Journal of Electrical Power & Energy Systems, 67, 202–215.CrossRefGoogle Scholar
  15. 15.
    Ortega-Vazquez, M., & Kirschen, D. (2010). Assessing the impact of wind power generation on operating costs. IEEE Transactions on Smart Grid, 1, 3.CrossRefGoogle Scholar
  16. 16.
    Ortega-Vazquez, M., & Kirschen, D. (2007). Optimizing the spinning reserve requirements using a cost/benefit analysis. IEEE Transaction on Power Systems, 22, 1.CrossRefGoogle Scholar
  17. 17.
    Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2015). Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal, 9, 1.CrossRefGoogle Scholar
  18. 18.
    Lyon, J. D., Hedman, K. W., & Zhang, M. (2014). Reserve requirements to efficiently manage intra-zonal congestion. IEEE Transactions on Power Systems, 29, 1.CrossRefGoogle Scholar
  19. 19.
    Wang, F., & Hedman, K. W. (2015). Dynamic reserve zones for day-ahead unit commitment with renewable resources. IEEE Transactions on Power Systems, 30, 2.CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Bian, Q., Xin, H., & Gan, D. (2016). A distributionally robust co-ordinated reserve scheduling model considering CVaR-based wind power reserve requirements. IEEE Transactions on Sustainable Energy, 7, 2.CrossRefGoogle Scholar
  21. 21.
    Beuchat, P. N., Warrington, J., Summers, T. H., & Morari, M. (2016). Performance bounds for look-ahead power system dispatch using generalized multistage policies. IEEE Transactions on Power Systems, 31, 1.CrossRefGoogle Scholar
  22. 22.
    Pandžić, H., Dvorkin, Y., Qiu, T., Wang, Y., & Kirschen, D. S. (2016). Toward cost-efficient and reliable unit commitment under uncertainty. IEEE Transactions on Power Systems, 31, 2.CrossRefGoogle Scholar
  23. 23.
    Yousefi Ramandi, M., Afshar, K., Shokri Gazafroudi, A., & Bigdeli, N. (2016). Reliability and economic valuation of demand side management programming in wind integrated power systems. International Journal of Electrical Power & Energy Systems, 78, 258–268.CrossRefGoogle Scholar
  24. 24.
    Amini, M. H., Boroojeni, K. G., Iyengar, S. S., Pardalos, P. M., Blaabjerg, F., & Madni, A. M. (2018). Sustainable interdependent networks: From theory to application. Cham: Springer.CrossRefGoogle Scholar
  25. 25.
    Najafi, S., et al. (2018). Decentralized control of DR using a multi-agent method. In Sustainable interdependent networks (pp. 233–249). Cham: Springer.CrossRefGoogle Scholar
  26. 26.
    Buldyrev, S. V., et al. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025.CrossRefGoogle Scholar
  27. 27.
    Amini, M. H., et al. (2018). A panorama of future interdependent networks: From intelligent infrastructures to smart cities (pp. 1–10). Cham: Sustainable Interdependent Networks. Springer.Google Scholar
  28. 28.
    Najafi, M., Ehsan, M., Fotuhi-Firuzabad, M., Akhavein, A., & Afshar, K. (2010). Optimal reserve capacity allocation with consideration of customer reliability requirements. Energy, 35, 3883–3890.CrossRefGoogle Scholar
  29. 29.
    Ahmadi-Khatir, A., Fotuhi-Firuzabad, M., & Goel, L. (2009). Customer choice of reliability in spinning reserve procurement and cost allocation using well-being analysis. Electric Power Systems Research, 79, 1431–1440.CrossRefGoogle Scholar
  30. 30.
    Shokri Gazafroudi, A., Shafie-khah, M., Abedi, M., Hosseinian, S. H., Dehkordi, G. H. R., Goel, L., Karimyan, P., Corchado, J. M., & Catalão, J. P. S. (July 2017). A novel stochastic reserve cost allocation approach of electricity market agents in the restructured power systems. Electric Power Systems Research, 152(C), 223–236.CrossRefGoogle Scholar
  31. 31.
    Conejo, A. J., Carrion, M., & Morales, J. M. (2010). Decision making under uncertainty in electricity markets. In International series in operations research & management science. New York: Springer.Google Scholar
  32. 32.
    GAMS Release 2.50. (1999). A user’s guide. GAMS Development Corporation. Retrieved September 20, 2017, from
  33. 33.
    The MathWorks. (2017). MATLAB. Retrieved September 20, 2017, from
  34. 34.
    Shokri Gazafroudi, A., Prieto-Castrillo, F., Pinto, T., & Corchado, J. M. (2017). Organization-based multi-agent system of local electricity market: Bottom-up approach. 15th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS).Google Scholar
  35. 35.
    Shokri Gazafroudi, A., Pinto, T., Prieto-Castrillo, F., Prieto, J., Corchado, J. M., Jozi, A., Vale, Z., & Venayagamoorthy, G. K. (2017). Organization-based multi-agent structure of the smart home electricity system. IEEE Congress on Evolutionary Computation (CEC).Google Scholar
  36. 36.
    Shokri Gazafroudi, A., De Paz, J. F., Prieto-Castrillo, F., Villarrubia, G., Talari, S., Shafie-khah, M., & Catalão, J. P. S. A review of multi-agent based energy management systems. 8th International Symposium on Ambient Intelligence (ISAmI).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amin Shokri Gazafroudi
    • 1
  • Miadreza Shafie-khah
    • 2
    Email author
  • Desta Zahlay Fitiwi
    • 2
  • Sérgio F. Santos
    • 2
  • Juan Manuel Corchado
    • 1
    • 3
  • João P. S. Catalão
    • 2
    • 4
    • 5
  1. 1.BISITE Research GroupUniversity of SalamancaSalamancaSpain
  2. 2.C-MASTUniversity of Beira InteriorCovilhãPortugal
  3. 3.Osaka Institute of TechnologyAsahi-ku OhmiyaOsakaJapan
  4. 4.INESC TEC and the Faculty of Engineering of the University of PortoPortoPortugal
  5. 5.INESC-ID, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal

Personalised recommendations