Impact of Recombinant DNA Technology and Nanotechnology on Agriculture

  • Praveen Guleria
  • Vineet Kumar
Part of the Sustainable Agriculture Reviews book series (SARV, volume 32)


Agriculture has direct impact on the food status and economy of any country. For the last two decades, attempts have been made to improve agricultural production by using recombinant DNA technology and nanotechnology. Application of recombinant DNA technology and nanotechnology induces direct interaction of transgene and nanoparticles with the components of the agroecosystem. Escape of transgene from transgenic plants invades wild plant types, leading to the generation of superweeds with enhanced invasiveness. Further, the transgene occurs within soil particles in suspended form in the soil microbiome. In this form, the transgene interacts with soil microbial communities and enters the food chain via bioaccumulation and biomagnification. Likewise, interaction of nanoparticles with soil components may enhance nanoparticle toxicity. Such alterations may modify the growth and survival of microbes and plants. This chapter presents the toxic effects of recombinant DNA technology and nanotechnology on the various components of agroecosystem.


Plants Soil Microbes Ecosystem Impact Recombinant DNA technology Nanotechnology 


  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532. CrossRefPubMedGoogle Scholar
  2. Atlas RM, Bartha R (1982) Microbial ecology: Fundamentals and Applications. J Ecol 70:686. CrossRefGoogle Scholar
  3. Bergelson J, Purrington CB, Wichmann G (1998) Promiscuity in transgenic plants. Nature 395:25. CrossRefPubMedGoogle Scholar
  4. Brady NC (1984) The nature and properties of soils. Macmillan, New YorkGoogle Scholar
  5. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. CrossRefPubMedGoogle Scholar
  6. Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. CrossRefPubMedGoogle Scholar
  9. Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 420:327–333. CrossRefPubMedGoogle Scholar
  10. Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol 39:915–923. CrossRefGoogle Scholar
  11. Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2:15. CrossRefGoogle Scholar
  12. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090. CrossRefPubMedGoogle Scholar
  13. Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9:271–278. CrossRefPubMedGoogle Scholar
  14. Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124. CrossRefGoogle Scholar
  15. Donegan KK, Seidler RJ, Fieland VJ, Schaller DL, Palm CJ, Ganio LM, Cardwell DM, Steinberger Y (1997) Decomposition of genetically engineered tobacco under field conditions: Persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations. J Appl Ecol 34:767–777. CrossRefGoogle Scholar
  16. Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti effects on the soil ecosystem. J Appl Ecol 36:920–936. CrossRefGoogle Scholar
  17. Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1–9. CrossRefGoogle Scholar
  18. Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51:487–496. CrossRefPubMedGoogle Scholar
  19. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563. CrossRefGoogle Scholar
  20. El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nanosized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82. CrossRefPubMedGoogle Scholar
  21. Firidin S (2010) Recombinant DNA technology. Yunus Res Bull 10:16–19Google Scholar
  22. Fischer, G., Huang, J., Keyzer, M.A., Qiu, H., Sun, L., van Veen, W.C.M. (2007) China’s agricultural prospects and challenges. Report on scenario simulations until 2030 with the Chinagro welfare model covering national, regional and county levelGoogle Scholar
  23. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: Nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316. CrossRefPubMedGoogle Scholar
  24. Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit Rev Biotechnol 19:227–276. CrossRefGoogle Scholar
  26. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664. CrossRefPubMedGoogle Scholar
  27. Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles as affected by ph and natural organic matter. Langmuir 24:12385–12391. CrossRefPubMedGoogle Scholar
  28. Gould F, Anderson A, Jones A, Sumerford D, Heckel DG, Lopez J, Micinski S, Leonard R, Laster M (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci U S A 94:3519–3523CrossRefGoogle Scholar
  29. Herdt RW (2006) Biotechnology in Agriculture. Annu Rev Environ Resour 34:265–295CrossRefGoogle Scholar
  30. Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487. CrossRefGoogle Scholar
  31. Ho MW (2000) Genetic engineering dream or nightmare?: Turning the tide on the brave new world of bad science and big business. 2 Rev Updated edition. International Publishing Group Continuum.
  32. Ho P, Xue D (2008) Farmers' perceptions and risks of agro-biotechnological innovations in China: ecological change in Bt cotton? Int J Environ Sustain Dev 7:396–417. CrossRefGoogle Scholar
  33. Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355. CrossRefPubMedGoogle Scholar
  34. Huang F, Buschman LL, Higgins RA, McGaughey WH (1999) Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science 284:965–967. CrossRefPubMedGoogle Scholar
  35. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165. CrossRefGoogle Scholar
  36. Iqbal M, Verkerk RHJ, Furlong MJ, Ong PC, Rahman SA, Wright DJ (1996) Evidence for resistance to Bacillus thuringiensis (Bt) subsp. kurstaki HD-1, Bt subsp. aizawai and Abamectin in field populations of Plutella xylostella from Malaysia. Pestic Sci 48:89–97.<89::AID-PS450>3.0.CO;2-B CrossRefGoogle Scholar
  37. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  38. James C (2003) Global review of commercialized transgenic crops. Curr Sci 84:303–309Google Scholar
  39. James C (2004) Preview: global status of commercialized biotech/GM crops: 2004Google Scholar
  40. Johnson BR, Hope AR (2009) Biotechnology in the environment: potential effects on biodiversity. In: Doelle HW, Rokem JS, Berovic M (eds) Biotechnology: fundamentals in biotechnology, vol X. Encyclopedia of Life Support Systems (EOLSS), Abu Dhabi, U.A.E, pp 1–11Google Scholar
  41. Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In Situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. CrossRefPubMedGoogle Scholar
  43. Kramarz P, Vaufleury A, Gimbert F, Cortet J, Tabone E, Andersen MN, Krogh PH (2009) Effects of Bt-maize material on the life cycle of the land snail Cantareus asperses. Appl Soil Ecol 42:236–242. CrossRefGoogle Scholar
  44. Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822. CrossRefPubMedGoogle Scholar
  45. Lefol E, Danielou V, Darmency H (1996) Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crop Res 45:153–161. CrossRefGoogle Scholar
  46. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132. CrossRefGoogle Scholar
  47. Liu YB, Tabashnik BE (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc R Soc Lond B 264:605–610. CrossRefGoogle Scholar
  48. Liu YB, Tabashnik BE, Dennehy TJ, Patin AL, Bartlett AC (1999) Development time and resistance to Bt crops. Nature 400:519. CrossRefPubMedGoogle Scholar
  49. Liu K, Zheng J, Hong H, Peng J, Yang H, Peng R (2005) Mechanisms for Bt toxin resistance and increased chemical pesticide susceptibility in Cry1Ac10-resistant cultured insect cells. Cytotechnology 49:153–160. CrossRefGoogle Scholar
  50. Liu N, Zhu P, Peng C, Kang L, Gao H, Clarke NJ, Clarke JL (2010a) Effect on soil chemistry of genetically modified (GM) vs. non-GM maize. GM Crop 1:1–5. CrossRefGoogle Scholar
  51. Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J (2010b) Study of the inhibitory effect of watersoluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748. CrossRefPubMedGoogle Scholar
  52. Losey JE, Raynor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214. CrossRefPubMedGoogle Scholar
  53. Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154. CrossRefPubMedGoogle Scholar
  54. Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061. CrossRefPubMedGoogle Scholar
  55. Maghari BM, Ardekani AM (2011) Genetically modified foods and social concerns. Avicenna J Med Biotech 3:109–117Google Scholar
  56. Mikkelsen TR, Jensen J, Jorgensen RB (1996) Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris. Theoret Appl Genetics 92:492–497. CrossRefGoogle Scholar
  57. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239. CrossRefGoogle Scholar
  58. Mohanty SR, Rajput P, Kollah B, Chourasiya D, Tiwari A, Singh M, Rao AS (2014) Methane oxidation and abundance of methane oxidizers in tropical agricultural soil (vertisol) in response to CuO and ZnO nanoparticles contamination. Environ Monit Assess 186:3743–3753. CrossRefPubMedGoogle Scholar
  59. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada B, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305. CrossRefPubMedGoogle Scholar
  60. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nielsen KM, Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. Strain BD413(pFG4ΔnptII) with transgenic plant DNA in soil Microcosms and effects of kanamycin on selection of transformants. Appl Environ Microbiol 66:1237–1242. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Oppert B, Kramer KJ, Beeman RW, Johnson D, McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272:23473–23476. CrossRefPubMedGoogle Scholar
  63. Phogat N, Khan SA, Shankar S, Ansary AA, Uddin I (2016) Fate of inorganic nanoparticles in agriculture. Adv Mater Lett 7:03–12. CrossRefGoogle Scholar
  64. Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA (2009) Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43:2589–2594. CrossRefPubMedGoogle Scholar
  65. Rashid MI, Shahzad T, Shahid M, Ismail IMI, Shah GM, Almeelbi T (2016) Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J Hazard Mater 324:298–305. CrossRefPubMedGoogle Scholar
  66. Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35–39. CrossRefPubMedGoogle Scholar
  67. Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480. CrossRefPubMedGoogle Scholar
  68. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651. CrossRefGoogle Scholar
  70. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395. CrossRefGoogle Scholar
  71. Shen RF, Cai H, Gong WH (2006) Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant Soil 285:149–159. CrossRefGoogle Scholar
  72. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011a) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–444. CrossRefPubMedGoogle Scholar
  73. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011b) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75:1–13. CrossRefGoogle Scholar
  74. Shoults-Wilson WA, Zhurbich OI, McNear DH, Tsyusko OV, Bertsch PM, Unrine JM (2011c) Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20:385–396. CrossRefPubMedGoogle Scholar
  75. Siegel J, Ondrej K, Pavel U, Kolska Z, Slepicka P, Svorcik V (2012) Progressive approach for metal nanoparticle synthesis. Mater Lett 89:47–50. CrossRefGoogle Scholar
  76. Simonin M, Guyonnet JP, Martins JMF, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535. CrossRefPubMedGoogle Scholar
  77. Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6.
  78. Snow AA, Andersen B, Jorgensen RB (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol Ecol 8:605–615. CrossRefGoogle Scholar
  79. Swift MJ, Anderson JM (1994) Biodiversity and ecosystem function in agricultural systems. In: Schulze ED, Mooney AM (eds) Biodiversity and ecosystem function, vol 99, pp 15–41. CrossRefGoogle Scholar
  80. Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79. CrossRefGoogle Scholar
  81. Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A 91:4120–4124. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Mensua JL, Ferre J (1997) Global variation in the genetic and biochemical basis of diamond back moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci U S A 94:12780–12785. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: Implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1. CrossRefGoogle Scholar
  84. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991. CrossRefPubMedGoogle Scholar
  85. Tong T, Shereef A, Wu J, Binh CTT, Kelly JJ, Gaillard JF, Gray KA (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12486–12495. CrossRefPubMedGoogle Scholar
  86. Wan B (2015) Transgenic pyramiding for crop improvement. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools, pp 369–396. Google Scholar
  87. Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040. CrossRefPubMedGoogle Scholar
  88. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441. CrossRefGoogle Scholar
  89. Warwick SI, Beckie HJ, Small E (1999) Transgenic crops : new weed problems for Canada? Phytoprotection 80:71–84. CrossRefGoogle Scholar
  90. Warwick SI, Legere A, Simard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395. CrossRefPubMedGoogle Scholar
  91. Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotech 6:65–71. CrossRefGoogle Scholar
  92. Whalon ME, McGaughey WH (1998) Bacillus thuringiensis: use and resistance management. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin, pp 106–137. CrossRefGoogle Scholar
  93. Widmer F, Seidler RJ, Watrud LS (1996) Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol Ecol 5:603–613. CrossRefGoogle Scholar
  94. Widmer F, Seidler RJ, Donegan KK, Reed GL (1997) Quantification of transgenic plant marker gene persistence in the field. Mol Ecol 6:1–7. CrossRefGoogle Scholar
  95. Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci U S A 94:10536–10540. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093. CrossRefPubMedGoogle Scholar
  97. Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822. CrossRefPubMedGoogle Scholar
  98. Zhao JH, Ho P, Azadi H (2011) Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ Monit Assess 173:985–994. CrossRefPubMedGoogle Scholar
  99. Zwahlen C, Hilbeck A, Gugerl P, Nientwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol 12:765–775. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Praveen Guleria
    • 1
  • Vineet Kumar
    • 2
  1. 1.Plant Biotechnology & Genetic Engineering Laboratory, Department of Biotechnology, School of Life SciencesDAV UniversityJalandharIndia
  2. 2.Department of Biotechnology, School of Biotechnology and Biosciences, Faculty of Technology and SciencesLovely Professional University (LPU)PhagwaraIndia

Personalised recommendations