Blockchain-Based Decentralized Business Models in the Sharing Economy: A Technology Adoption Perspective

  • Andranik TumasjanEmail author
  • Theodor Beutel


Recently, blockchain technology has increasingly been deemed to enable novel “decentralized” business models for the sharing economy and thereby potentially provide an alternative to extant “centralized” sharing economy business models. Using a technology adoption perspective, our chapter explores under which circumstances such blockchain-based decentralized sharing economy business models may be widely adopted. Building on extant research, we theorize on the factors that are relevant for adoption from the individual users’ perspective. We then derive eight potential adoption scenarios of blockchain-based decentralized sharing economy business models and explore adoption using an agent-based simulation for the short term vs. long term. Our analyses highlight the relatively high importance of individual attitudes toward decentralized business models vis-à-vis contextual influences and show how adoption patterns vary depending on the time horizon for the different scenarios. We conclude our exploratory study by deriving research and practical implications for blockchain-based business models.


Sharing economy Business models Blockchain Technology adoption Agent-based modeling 


  1. Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. P. (2017). Agent based modelling and simulation tools: a review of the state-of-art software. Computer Science Review, 24, 13–33.CrossRefGoogle Scholar
  2. Abramova, S., & Boehme, R. (2016). Perceived benefit and risk as multidimensional determinants of bitcoin use: a quantitative exploratory study. Proceedings of the 37th International Conference on Information Systems, 1–20.Google Scholar
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.CrossRefGoogle Scholar
  4. Alden, K., Timmis, J., & Coles, M. (2014). Easing parameter sensitivity analysis of NetLogo simulations using SPARTAN. Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, 622–628.Google Scholar
  5. Axelrod, R. (1997). Advancing the art of simulation in the social sciences. In G. Fandel et al. (Eds.), Simulating Social Phenomena, Lecture notes in economics and mathematical systems (Vol. 456, pp. 21–40). Berlin/Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  6. Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.CrossRefGoogle Scholar
  7. Beck, R., Müller-Bloch, C., & King, J. L. (2018). Governance in the blockchain economy – a framework and research agenda. Journal of the Association for Information Systems 19(3). Forthcoming.Google Scholar
  8. Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595–1600.CrossRefGoogle Scholar
  9. BlockchainHub. (2017). Blockchains & distributed ledger technologies. Accessed 22 Mar 2018.
  10. Bohlmann, J. D., Calantone, R. J., & Zhao, M. (2010). The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach. Journal of Product Innovation Management, 27(5), 741–760.CrossRefGoogle Scholar
  11. Botsman, R. (2015). Defining the sharing economy: What is collaborative consumption – and what isn’t?. Accessed 22 Mar 2018.
  12. Botsman, R., & Rogers, R. (2011). What’s mine is yours: How collaborative consumption is changing the way we live. London: Collins.Google Scholar
  13. Bruch, E., & Atwell, J. (2015). Agent-based models in empirical social research. Sociological Methods & Research, 44(2), 186–221.CrossRefGoogle Scholar
  14. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York/London: W.W. Norton & Company.Google Scholar
  15. Casti, J. L. (1996). Seeing the light at El Farol: A look at the most important problem in complex systems theory. Complexity, 1(5), 7–10.CrossRefGoogle Scholar
  16. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.CrossRefGoogle Scholar
  17. De Filippi, P. (2017). What blockchain means for the sharing economy. Harvard Business Review Digital Articles, 2–5.
  18. Deloitte. (2017). Deloitte survey: Blockchain reaches beyond financial services with some industries moving faster. Accessed 27 Mar 2018.
  19. Dutra, A., Tumasjan, A., & Welpe, I. M. (2018). Blockchain is changing how media and entertainment companies compete. MIT Sloan Management Review, 59(1), 39–45.Google Scholar
  20. Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2017). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 110(3), 392–407.Google Scholar
  21. Edelman, B. G., & Geradin, D. (2016). Efficiencies and regulatory shortcuts: How should we regulate companies like Airbnb and Uber? Stanford Technology Law Review, 19(2), 293–328.Google Scholar
  22. Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.CrossRefGoogle Scholar
  23. Epstein, J. M. (2012). Generative social science: Studies in agent-based computational modeling, Princeton studies in complexity 11. Princeton: Princeton University Press.Google Scholar
  24. Farrell, J., & Shapiro, C. (1988). Dynamic competition with switching costs. The RAND Journal of Economics, 19, 123–137.CrossRefGoogle Scholar
  25. Folkinshteyn, D., Glassboro, N. J., Lennon, M., Altoona, P. A., & Reilly, T. (2015). A tale of twin tech: Bitcoin and the WWW. Journal of Strategic and International Studies, X(2), 82–90.Google Scholar
  26. Frambach, R. T., & Schillewaert, N. (2002). Organizational innovation adoption: A multi-level framework of determinants and opportunities for future research. Journal of Business Research, 55(2), 163–176.CrossRefGoogle Scholar
  27. Friedlmaier, M., Tumasjan, A., & Welpe, I. M. (2018). Disrupting industries with blockchain: The industry, venture capital funding, and regional distribution of blockchain ventures. Proceedings of the 51st Hawaii International Conference on System Sciences, 3517–3526Google Scholar
  28. Gallagher, S., & West, J. (2009). Reconceptualizing and expanding the positive feedback network effects model: A case study. Journal of Engineering and Technology Management, 26(3), 131–147.CrossRefGoogle Scholar
  29. Garcia, R., & Jager, W. (2011). From the special issue editors: Agent-based modeling of innovation diffusion. Journal of Product Innovation Management, 28(2), 148–151.CrossRefGoogle Scholar
  30. Gencer, A. E., Basu, S., Eyal, I., van Renesse, R., & Sirer, E. G. (2018). Decentralization in bitcoin and ethereum networks. arXiv preprint arXiv:1801.03998.
  31. Groenhuijzen, M. R., & Verhagen, P. (2016). Testing the robustness of local network metrics in research on archeological local transport networks. Frontiers in Digital Humanities, 3, 6.CrossRefGoogle Scholar
  32. Gupta, V. (2017). A brief history of blockchain. Harvard Business Review, 2–4.Google Scholar
  33. Hartwick, J., & Barki, H. (1994). Explaining the role of user participation in information system use. Management Science, 40(4), 440–465.CrossRefGoogle Scholar
  34. Iansiti, M., & Lakhani, K. R. (2017). The truth about blockchain. Harvard Business Review, 95(1), 118–127.Google Scholar
  35. Jarvenpaa, S., & Teigland, R. (2017). Trust in digital environments: From the sharing economy to decentralized autonomous organizations. Proceedings of the 50th Hawaii International Conference on System Sciences; HICSS, 5812–5816.Google Scholar
  36. Jeffries, A. ‘Blockchain’ is meaningless. blockchain-bitcoin-ethereum-cryptocurrency-meaning. Accessed 27 Mar 2018.
  37. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183–213.CrossRefGoogle Scholar
  38. Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151–162.CrossRefGoogle Scholar
  39. Malhotra, Y., & Galletta, D. F. (1999). Extending the technology acceptance model to account for social influence: theoretical bases and empirical validation. Proceedings of the 32nd Hawaii International Conference on System Sciences; HICSS.Google Scholar
  40. Malhotra, A., & van Alstyne, M. (2014). The dark side of the sharing economy … and how to lighten it. Communications of the ACM, 57(11), 24–27.CrossRefGoogle Scholar
  41. Matzler, K., Veider, V., & Kathan, W. (2015). Adapting to the sharing economy. MIT Sloan Management Review, 56(2), 71–77.Google Scholar
  42. Moore, G. A. (2014). Crossing the chasm: Marketing and selling disruptive products to mainstream customers (3rd. ed.). New York: Harper Collins.Google Scholar
  43. Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222.CrossRefGoogle Scholar
  44. Morabito, V. (2017). Business innovation through blockchain: The B3 perspective. Management/business for professionals. Cham: Springer International Publishing.CrossRefGoogle Scholar
  45. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Accessed 30 Nov 2017.
  46. Patterson, S. (2016). Openbazaar in depth: Interview with COO Sam Patterson. Accessed 25 Mar 2018.
  47. Porru, S., Pinna, A., Marchesi, M., & Tonelli, R. (2017). Blockchain-oriented software engineering: challenges and new directions. Proceedings of the 39th International Conference on Software Engineering Companion, 169–171.Google Scholar
  48. Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation, 82(9), 609–623.CrossRefGoogle Scholar
  49. Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181–193.CrossRefGoogle Scholar
  50. Rogers, E. M. (2003). Diffusion of Innovation (5th ed.). New York: The Free Press.Google Scholar
  51. Schneck, P., Tumasjan, A., & Welpe, I. M. (2018). Disrupting the disruptors? An in-depth analysis of the implications of blockchain technology for today’s sharing economy (Working Paper).Google Scholar
  52. Seidel, M. D. L. (2017). Questioning centralized organizations in a time of distributed trust. Journal of Management Inquiry, 19(1), 1–5.Google Scholar
  53. Seidl, R. (2014). Social scientists, qualitative data, and agent-based modeling. Proceedings ot the Social Simulation Conference, 1–4.Google Scholar
  54. Tapscott, D., & Tapscott, A. (2016a). Blockchain revolution: How the technology behind Bitcoin is changing money, business and the world. London: Portfolio Penguin.Google Scholar
  55. Tapscott, D., & Tapscott, A. (2016b). The impact of the blockchain goes beyond financial services. Harvard Business Review, 10, 2–5.Google Scholar
  56. Tarhini, A., Arachchilage, N. A. G., Masa’deh, R., & Abbasi, M. S. (2015). A critical review of theories and models of technology adoption and acceptance in information system research. International Journal of Technology Diffusion, 6(4), 58–77.CrossRefGoogle Scholar
  57. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125–143.CrossRefGoogle Scholar
  58. Treiblmaier, H. (2017). The world isn’t static, so why are we? How agent based modeling helps to create and test dynamic IS models and theories. Proceedings of the International Conference on Information Systems, pp. 1–16.Google Scholar
  59. Tumasjan, A. (2018). Blockchain-Technologie und das Internet of Things: Kurzfristiger Hype oder eine Symbiose für neue IoT-Geschäftsmodelle? Industrie 4.0 Management, 24(2), 29–32.Google Scholar
  60. Valenta, M., & Sandner, P. (2017). Comparison of Ethereum, Hyperledger Fabric and Corda (FSBC Working Paper).Google Scholar
  61. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.CrossRefGoogle Scholar
  62. Venkatesh, V., Morris, M. G., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.CrossRefGoogle Scholar
  63. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178.CrossRefGoogle Scholar
  64. Voshmgir, S. (2017). Disrupting governance with blockchains and smart contracts. Strategic Change, 26(5), 499–509.CrossRefGoogle Scholar
  65. Walker, M. J. (2017). Hype cycle for emerging technologies 2017. Accessed 12 Feb 2018.
  66. Welpe, I. M., Tumasjan, A., & Theurer, C. (2015). Der Blick der Managementforschung. In T. Sattelberger et al. (Eds.), Das demokratische Unternehmen: Neue Arbeits- und Führungskulturen im Zeitalter digitaler Wirtschaft (pp. 89–103). Freiburg: Haufe.Google Scholar
  67. Wilensky, U. (1999). NetLogo. Center for connected learning and computer-based modeling, Northwestern University.Google Scholar
  68. Wilensky, U., & Rand, W. (2015). Introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. Cambridge, MA: The MIT Press.Google Scholar
  69. Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current research on blockchain technology? – A systematic review. PloS one, 11(10), 1–27.CrossRefGoogle Scholar
  70. Zutshi, A. (2015). DYNAMOD – a dynamic agent based modelling framework for digital businesses (PhD dissertation). Universidade Nova de Lisboa.Google Scholar
  71. Zutshi, A., Grilo, A., & Jardim-Gonçalves, R. (2013). DYNAMOD: A modelling framework for digital businesses based on agent based modeling. Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management; IEEM, pp. 1372–1376.Google Scholar
  72. Zutshi, A., Grilo, A., & Jardim-Gonçalves, R. (2014). A dynamic agent-based modeling framework for digital business models: Applications to Facebook and a popular Portuguese online classifieds website. In P. J. Benghozi et al. (Eds.), Digital enterprise design & management, Advances in intelligent systems and computing (Vol. 261, pp. 105–117). Cham: Springer International Publishing.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Gutenberg School of Management and Economics, Chair of Management and Digital TransformationJohannes Gutenberg University MainzMainzGermany
  2. 2.Business SchoolThe University of EdinburghEdinburghUK

Personalised recommendations