Advertisement

Hot Tube Forming

  • Eren Billur
  • Frank Schieck
Chapter

Abstract

Tube forming is used to manufacture hollow geometries, otherwise would be stamped and welded. Automotive components could be produced by simply bending and preforming of tubular blanks; or by tube hydroforming (THF). Until recently, THF was limited to aluminum alloys and steels up to 1000 MPa tensile strength. Nowadays, hot tube hydroforming and tube bending & quenching processes are used in automotive industry to produce complex parts over 1500 MPa tensile strength.

References

  1. 1.
    A. Tomizawa, N. Shimada, H. Matsuda, H. Mori, Development of three-dimentional hot bending and direct quench (3dq) mass processing technology, in Proceedings of International Conference “Hydroforming of Sheets, Tubes and Profiles” (2012), pp. 127–138Google Scholar
  2. 2.
    H. Chen, S. Hess, J. Haeberle, S. Pitikaris, P. Born, A. Güner, M. Sperl, A.E. Tekkaya, Enhanced granular medium-based tube and hollow profile press hardening. CIRP Ann. - Manufact. Technol. 65(1), 273–276 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Maeno, K. Mori, K. Adachi, Gas forming of ultra-high strength steel hollow part using air filled into sealed tube and resistance heating. J. Mater. Process. Technol. 214(1), 97–105 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Nedic, H. Ljungquist, E. Hollander, The new volvo xc60 car body, in Presented at EuroCarBody 2008, October 21–23, Bad Nauheim, Germany (2008)Google Scholar
  5. 5.
    Springer Fachmedien Wiesbaden. Schlanke a-säule: Bessere sicht, weniger gewicht. ATZExtra (2014)Google Scholar
  6. 6.
    The New Volvo V70 and XC70 Car Body (2007)Google Scholar
  7. 7.
    R. Neugebauer, F. Schieck, S. Polster, A. Mosel, A. Rautenstrauch, J. Schönherr, N. Pierschel, Press hardening - an innovative and challenging technology. Arch. Civil Mech. Eng. 12(2), 113–118 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Kubota, A. Tomizawa, K. Yamamoto, N. Okada, Development of finite element analysis method for three-dimensional hot bending and direct quench (3dq) process. AIP Conf. Proc. 1532(1), 568–573 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Shimada, A. Tomizawa, H. Kubota, H. Mori, M. Hara, S. Kuwayama, Development of three-dimensional hot bending and direct quench technology, in Procedia Engineering, vol. 81 (2014), pp. 2267 – 2272. 11th International Conference on Technology of Plasticity, ICTP 2014, 19–24 October 2014, Nagoya Congress Center, Nagoya, JapanGoogle Scholar
  10. 10.
    K. Uematsu, N. Shimada, A. Tomizawa, H. Mori, Development of three-dimensional hot bending and direct quench using robot, in 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (2015), pp. 165–171Google Scholar
  11. 11.
    Y. Hamasaki, A. Yumoto, Automotive solution (2): equipment development of 3-dimensional hot bending and direct quenching (3dq). Nippon Steel Sumitomo Metal Tech. Rep. 112, 74–80 (2016)Google Scholar
  12. 12.
    Mazda, Mazda Adopts the World’s First 3-dimensional Hot Bent Hardened Square Tube (Translated from Japanese) (2013)Google Scholar
  13. 13.
    Y. Ohta, Structure for front side frames of automobile, December 15 2015. US Patent 9,211,913Google Scholar
  14. 14.
    B. Snavely, Honda rolls out first acura nsx supercar in ohio factory, in USA Today (2016)Google Scholar
  15. 15.
    Acura NSX (2016)Google Scholar
  16. 16.
    Honda, 2017 Acura Nsx Press Kit - Space Frame and Body Panels (2016)Google Scholar
  17. 17.
    W.W. Zhang, C. Han, S.J. Yuan, Optimization of pre-form shapes by response surface methodology for hydro-forming of 780 mpa torsion beam. Int. J. Adv. Manufact. Technol. 85(5), 1227–1237 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Mori, Smart Hot Stamping for Ultra-high Strength Steel Parts (Springer, Berlin, 2015), pp. 403–408Google Scholar
  19. 19.
    V. Leire, P. Inaki, H. Izuru, Z. Jose Ignacio, M. Anegla, S. Jose Juan, P. Uwe, Gas forming of boron steel tubes at low pressure-applasting. Steel Res. Int. 81(9), 552–555 (2010)Google Scholar
  20. 20.
    B. A. Behrens, S. Hübner, S. Schrödter, J. Uhe, Conductive heating opens up various new opportunitites in hot stamping, in Proceedings of 5th International Conference on Accuracy in Forming Technology (ICAFT 2015) (2015), pp. 157–174Google Scholar
  21. 21.
    M. Ishikuza, N. Ueno, M. Saika, T. Komatsu, Molding Device and Molding Method (2017)Google Scholar
  22. 22.
    W. Linnig, A. Zuber, A. Frehn, G. Leontaris, W. Christophliemke, The twist beam rear axle design, materials, processes and concepts. ATZ Worldwide eMag. Ed. 111(2), 10–17 (2009)Google Scholar
  23. 23.
    A. Frehn, T. Säuberlich, Tubular steel components for light weight axle designs, in Proceedings of the 3rd International Conference on Steels in Cars and Trucks (SCT2011) (2011), pp. 10–19Google Scholar
  24. 24.
    P. Perrot, R. Vincenti, C. Feuvrier, The peugeot 307 cc body. Proc. EuroCarBody 2003, 172–237 (2003)Google Scholar
  25. 25.
    P. Sebastian, M. Pickenhahn, The new smart-roadster car body. Proc. EuroCarBody 2003, 172–237 (2003)Google Scholar
  26. 26.
    F. Brunies, E. Heinl, Body concept of the new mini cabrio. Proc. EuroCarBody 2004, 272–294 (2004)Google Scholar
  27. 27.
    C. Rauber, Press hardened steel - applications and future requirements at BMW, in Materials in Car Body Engineering 2015 (2015)Google Scholar
  28. 28.
    The EOS - More than an Automotive Structure: A Masterpiece on Body-Design (2006)Google Scholar
  29. 29.
    A. Gier, Hot forming and hardening of rollformed sections, Aluminum and Steel Forming, Automotive Engineering (2005), pp. 172–237Google Scholar
  30. 30.
    H. Lanzerath, M. Tuerk, Lightweight potential of ultra high strength steel tubular body structures. SAE Int. J. Mater. Manf. 8, 813–822, 04 (2015)Google Scholar
  31. 31.
    U. Diekmann, T. Säuberlich, A. Frehn, Luftvergütende hochfeste stähle für mehr crashsicherheit. ATZ - Automobiltechnische Zeitschrift 109(12), 1128–1135 (2007)CrossRefGoogle Scholar
  32. 32.
    R. Mušálek, P. Haušild, J. Siegl, J. Bensch, J. Sláma, Mechanical properties and fracture behavior of high-strength steels. Strength Mater. 40(1), 142–145 (2008)CrossRefGoogle Scholar
  33. 33.
    Dr. Ing. h. c. F. Porsche AG Presse-Datenbank. http://presse.porsche.de
  34. 34.
    S. Lepre, G. Desvignes, Advanced high strength steels and tubular multiwall technology in a twist axle application, in Presented at Great Designs in Steel, Livonia, MI, May 17th (2009)Google Scholar
  35. 35.
    O.S. Seo, S.J. Yoon, C.H. Suh, H.Y. Kim, Numerical modeling of hot press forming process of boron steel tube. AIP Conf. Proc. 1252(1), 1216–1222 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Cho, S. Park, Application of ahss for light weight automotive body and chassis parts, in Materials in Car Body Engineering 2009 (2009)Google Scholar
  37. 37.
    L. Hein, K. Weise, Lightweight chassis cradles, in Presented at Great Designs in Steel, Livonia, MI, April 9th (2008)Google Scholar
  38. 38.
    O. Vestermark, Nodes for hardened boron profile. Master Thesis, Luleå University of Technology (2008)Google Scholar
  39. 39.
    A. Gutermuth, Form blow hardening, in Presented at Forming in Car Body Engineering 2011, September 27th, Bad Nauheim, Germany (2011)Google Scholar
  40. 40.
    R. Neugebauer, A. Göschel, A. Sterzing, F. Schieck, Gas forming with integrated heat treatment for high performance steel-a solution approach for press hardened tubes and profiles, in 2nd International Conference on Hot Sheet Metal Forming of High-Performance Steel, Verlag Wissenschaftliche Scripten, Luleå, Auerbach (2009), pp. 181–188Google Scholar
  41. 41.
    R. Neugebauer, M. Werner, A. Paul, F. Schieck, Media based press hardening of tubes—opportunities and challenges, in Proceedings of the 5th International Conference on Tube Hydroforming. Kenichi Manabe:[S. n.] (2011), pp. 100–107Google Scholar
  42. 42.
    G.N. Chu, Y.L. Lin, M.Q. Ding, Hot hydroforming of 22mnb5 tube by resistance heating. JOM 68(7), 1983–1989 (2016)CrossRefGoogle Scholar
  43. 43.
    V. Oliveras Mérida, X. A. Ripoll, M. Ferstl, A. Zahinos Ruiz, V. Clua, Applying new blow-forming processes to obtain new structural components for automotiva industry: a-pillar, in Selected proceedings from the 15th International Congress on Project Engineering (2011), pp. 211–222Google Scholar
  44. 44.
    D. Landgrebe, F. Schieck, Hot gas forming for advanced tubular automobile components: opportunities and challenges, in ASME 2015 International Manufacturing Science and Engineering Conference (American Society of Mechanical Engineers, 2015), pp. V001T02A087–V001T02A087Google Scholar
  45. 45.
    H. Chen, A. Güner, N. Ben Khalifa, A.E. Tekkaya, Granular media-based tube press hardening. J. Mater. Process. Technol. 228, 145–159 (2016). (Hot Stamping)CrossRefGoogle Scholar
  46. 46.
    M. Bohuslav, J. Hana, V. Ivan, K. Petr, M. Uwe, Flexibility, productivity, and innovation power - core competencies of a tier 1 supplier, in Neue innovative Konzepte für die Innenhochdruckumformung (2014), pp. 107–114Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Billur Makine Ltd.AnkaraTurkey
  2. 2.Atılım UniversityAnkaraTurkey
  3. 3.Fraunhofer IWUChemnitzGermany

Personalised recommendations