Advertisement

Die Design and Manufacturing

  • Eren Billur
  • Takehide Senuma
Chapter

Abstract

In typical (cold) stamping operations, the dies are only used to plastically deform the metal material. In hot stamping, on the other hand, the dies are used to form the material and extract the heat energy from the blank. All this has to be done as quickly as possible to improve the part quality (to ensure martensite formation is completed) and part productivity. This chapter discusses the requirements from a hot stamping die, how they are designed, and how they are manufactured.

References

  1. 1.
    H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210(15), 2103–2118 (2010)CrossRefGoogle Scholar
  2. 2.
    E.D. Schachinger, S. Kolnberger, J. Faderl, Evolution of phases and formation of oxides on different galvanized hot formed steel grades, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 111–119Google Scholar
  3. 3.
    P. Belanger, New Zn multistep hot stamping innovation, in Presented at Great Designs in Steel 2017 (2017)Google Scholar
  4. 4.
    L. Vaissiere, J. P. Laurent, A. Reinhardt, Development of pre-coated boron steel for applications on PSA Peugeot Citroën and Renault bodies in white, in SAE Technical Paper. SAE International (2002)Google Scholar
  5. 5.
    H. Mohrbacher, Martensitic automotive steel sheet - fundamentals and metallurgical optimization strategies, in Innovative Research in Hot Stamping Technology, vol. 1063 of Advanced Materials Research (Trans Tech Publications, 2015), pp. 130–142Google Scholar
  6. 6.
    M. Spittel, T. Spittel, Steel symbol/number: 22MnB5/1.5528 (Springer, Berlin 2009), pp. 930–935CrossRefGoogle Scholar
  7. 7.
    E. Billur, Fundamentals and applications of hot stamping technology for producing crash-relevant automotive parts. Ph.D. Dissertation, The Ohio State University, Columbus, OH, USA (2013)Google Scholar
  8. 8.
    E. Billur, C. Wang, C. Bloor, M. Holecek, H. Porzner, T. Altan, Advancements in tailored hot stamping simulations: cooling channel and distortion analyses. AIP Conf. Proc. 1567(1), 1079–1084 (2013)CrossRefGoogle Scholar
  9. 9.
    P. Jonason, R. Johansson, J.K. Larsson, Challenges in process and design for multi material implementation in body and exterior parts at volvo cars, in Presented at Insight Edition Conference, September 18-19th, Neckarsulm, Germany (2012)Google Scholar
  10. 10.
    R. Wohlecker, R. Henn, H. Wallentowitz, J. Leyers. Mass reduction. fka Report 56690, fka Aachen (2006)Google Scholar
  11. 11.
    L. Sciarretta, Alfa romeo giulia. Presented at EuroCarBody 2016, October 17-20, Bad Nauheim, Germany (2016)Google Scholar
  12. 12.
    K. Teshima, Challenges of high-efficiency hot forming processes at Honda, in Presented at Forming in Car Body Engineering 2012, September 26-27, Bad Nauheim, Germany (2012)Google Scholar
  13. 13.
    P. Šimon, Škoda Rapid. Presented at EuroCarBody 2012, October 16-18, Bad Nauheim, Germany (2012)Google Scholar
  14. 14.
    G. Tandon, I. Viaux, Lightweight door ring concepts using hot stamped laser welded blanks. Presented at Great Designs in Steel 2014 (2014)Google Scholar
  15. 15.
    R. Kolleck, W. Weiß, P. Mikoleizik, Cooling of tools for hot stamping applications. IDDRG, Graz, Austria 2010, 111–119 (2010)Google Scholar
  16. 16.
    Ch. Escher, J. Wilzer, Tool steels for hot stamping of high strength automotive body parts. Int. Conf. Stone Concr. Mach. (ICSCM) 3, 219–228 (2015)Google Scholar
  17. 17.
    H. Steinbeiss, H. So, T. Michelitsch, H. Hoffmann, Method for optimizing the cooling design of hot stamping tools. Prod. Eng. Res. Devel. 1(2), 149–155 (2007)CrossRefGoogle Scholar
  18. 18.
    F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, 5th edn. (Wiley, New York, 2011)Google Scholar
  19. 19.
    B. Oberpriller, L. Burkhardt, B. Griesbach, Benchmark 3–continuous press hardening, in Proceedings of the Conference NUMISHEET (2008)Google Scholar
  20. 20.
    M. Merklein, J. Lechler, T. Stoehr, Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping. Int. J. Mater. Form. 2(1), 259–262 (2009)CrossRefGoogle Scholar
  21. 21.
    esi Group. PAM-STAMP 2015.1 User Guide (2015)Google Scholar
  22. 22.
    F. Schieck, C. Hochmuth, S. Polster, A. Mosel, Modern tool design for component grading incorporating simulation models, efficient tool cooling concepts and tool coating systems. CIRP J. Manuf. Sci. Technol. 4(2), 189–199 (2011). Energy-Efficient Product and Process Innovations in Production EngineeringGoogle Scholar
  23. 23.
    R. Rahn, I. Schruff, Modern tool steels – a prerequisite for successful hot-stamping of steel sheets, in Proceedings of New Developments in Sheet Metal Forming Conference, Stuttgart, Germany (2016), pp. 289–301Google Scholar
  24. 24.
    Woo-Seung Lim, Hong-Seok Choi, Seok-young Ahn, Byung-Min Kim, Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process. Int. J. Adv. Manuf. Technol. 70(5), 1189–1203 (2014). FebCrossRefGoogle Scholar
  25. 25.
    D. Jeanjean, Tools and dies specifications for hot forming technologies, in Presented at Seminar Dedicated to New Hot Forming Technologies, Loire-Etude, St. Chamond, France (2015)Google Scholar
  26. 26.
    R. Kolleck, S. Pfanner, E.P. Warnke, R. Ganter, New concept for tempering sheet metal forming tools, in Chemnitz Car Body Colloquium. Verl. Wiss. Scripten (2005)Google Scholar
  27. 27.
    Hongsheng Liu, Chengxi Lei, Zhongwen Xing, Cooling system of hot stamping of quenchable steel br1500hs: optimization and manufacturing methods. Int. J. Adv. Manuf. Technol. 69(1), 211–223 (2013). OctCrossRefGoogle Scholar
  28. 28.
    E. Billur, Chapter 16: Tool Materials, Treatments and Coatings, in ed. by T. Altan, A.E. Tekkaya Sheet Metal Forming - Processes and Applications (ASM International, 2012), pp. 317–338Google Scholar
  29. 29.
    Y. Nicolas, Hot stamping: a new hot forming technology. ThyssenKrupp techforum (English ed.), (JUILL) (2005)Google Scholar
  30. 30.
    KIND & CO., Edelstahlwerk, KG. Special hot work tool steel CR7V. Product Datasheet (2013)Google Scholar
  31. 31.
    Böhler Uddeholm. H13 tool steel. Product Datasheet (2013)Google Scholar
  32. 32.
    Böhler, W360 isobloc ®. Product Datasheet (2013)Google Scholar
  33. 33.
    Uddeholm. Dievar ®. Product Datasheet (2015)Google Scholar
  34. 34.
    Dörrenberg Edelstahl. Cp2m ®. Product Datasheet (2015)Google Scholar
  35. 35.
    S.A Rovalma, Company web page (2018). Accessed 21 March 2018Google Scholar
  36. 36.
    Höganäs, Glidcop ®dispersion strengthened copper. Product Datasheet (2013)Google Scholar
  37. 37.
    ASTM. Standard terminology relating to wear and erosion. G40, 2005Google Scholar
  38. 38.
    N.H. Kim, K.Y. Kwon, C.G. Kang, The effect of cooling rate on mechanical properties in hot press forming of Al-Si coated 22MnB5 sheet and its theoretical temperature prediction, in 2nd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Luleå, Sweden (2009), pp. 15–17Google Scholar
  39. 39.
    H. Kim, Prediction and elimination of galling in forming galvanized advanced high strength steels (ahss). Ph.D. Dissertation, The Ohio State University, Columbus, OH, USA (2008)Google Scholar
  40. 40.
    G. Adam Roberts, R. Kennedy, G. Krauss, Tool Steels (ASM international, 1998)Google Scholar
  41. 41.
    American Society of Metals. ASM handbook of “Heat Treating, 3rd printing”, vol. 04 (ASM International, 1995)Google Scholar
  42. 42.
    O. Salas, J. Oseguera, N. García, U. Figueroa, Nitriding of an h13 die steel in a dual plasma reactor. J. Mater. Eng. Perform. 10(6), 649–655 (2001). DecCrossRefGoogle Scholar
  43. 43.
    M. Larsson, Why surface coat moulds and dies? in Recent Advances in Manufacture & Use of Tools & Dies and Stamping of Steel Sheets (2004), pp. 41–52Google Scholar
  44. 44.
    D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (William Andrew, 2010)Google Scholar
  45. 45.
    S. Mozgovoy, J. Hardell, B. Prakash, High temperature friction and wear studies on tool coatings under press hardening contact conditions, in International Tribology Conference: 15/09/2015-20/09/2015 (2015)Google Scholar
  46. 46.
    A. Reiter, Pvd coatings for hot metal sheet forming operations, in Proceedings 2nd Erlanger Workshop Warmblechumformung, Geiger, M (2007), pp. 103–110Google Scholar
  47. 47.
    ionbond. Company web page (2018). Accessed 21 March 2018Google Scholar
  48. 48.
    T.-G. Lee, Pvd coating technology for press hardening. Presented at Daego Mechatronics & Materials Institute, Korea, October 8th (2008)Google Scholar
  49. 49.
    S.A. Rovalma, Tool steels for hot forming dies (2010)Google Scholar
  50. 50.
    Hans Qvarnström, Technical note: A mathematical formula for transformation between the steel hardness scales of rockwell c and vickers. J. Heat. Treat. 7(1), 65–67 (1989). MarCrossRefGoogle Scholar
  51. 51.
    A. Reiter, Innovative pvd-beschichtungen für formgebende und schneidende werkzeuge. Presented at 4. Internationales Fachseminar für Schnitt- und Stanzwerkzeughersteller, March 19th (2015)Google Scholar
  52. 52.
    M. Suehiro, J. Maki, K. Kusumi, M. Ohgami, T. Miyakoshi, Properties of aluminized steels for hot-forming, in SAE Technical Paper. SAE International (2003)Google Scholar
  53. 53.
    G. Deinzer, A. Stich, K. Lamprecht, G. Schmid, M. Rauscher, M. Merklein, J. Lechler, Presshärten von tailor welded blanks: Werkstoffauswahl, eigenschaften und verbindungstechnik, in 3. Erlanger Workshop Warmblechumformung (2008), pp. 1–21Google Scholar
  54. 54.
    T. Nishibata, N. Kojima, Effect of quenching rate on hardness and microstructure of hot-stamped steel. Tetsu-to-Hagane 96(6), 378–385 (2010)CrossRefGoogle Scholar
  55. 55.
    K. Hidaka, Y. Takemoto, T. Senuma, Microstructural evolution of carbon steels in hot stamping processes. ISIJ Int. 52(4), 688–696 (2012)CrossRefGoogle Scholar
  56. 56.
    Y. Ishimori, T. Shima, H. Fukuchi, Patent application, JP-A-2007-75834, 2007. JP-A-2007-75834Google Scholar
  57. 57.
    N. Nomura, H. Fukuchi, A. Seto, Effect of high cooling rate on shape accuracy of hot stamped parts, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 549–557Google Scholar
  58. 58.
    T. Senuma, Y. Takemoto, Present status and future perspective of hot stamping technology. J. Jpn Soc. Technol. Plast. 51(592), 410–415 (2010)CrossRefGoogle Scholar
  59. 59.
    T. Senuma, H. Magome, A. Tanabe, Y. Takemoto, New hot stamping technology characterized by its high productivity, in 2nd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Luleå, Sweden (2009), pp. 221–228Google Scholar
  60. 60.
    E. Ota, Y. Yogo, T. Iwata, N. Iwata, K. Ishida, K. Takeda, Formability improvement technique for heated sheet metal forming by partial cooling, in Metal Forming 2014, vol. 622 of Key Engineering Materials (Trans Tech Publications, 2014), pp. 279–283Google Scholar
  61. 61.
    E. Ota, Y. Yogo, N. lwata, Deep drawing technique with temperature distribution control for hot stamping process, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2,Toronto, ON, Canada(2015), pp. 549–557Google Scholar
  62. 62.
    T. Kurz, G. Luckeneder, T. Manzenreiter, H. Schwinghammer, A. Sommer, Zinc coated press-hardening steel-challenges and solution. in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 345–354Google Scholar
  63. 63.
    T. Nishibata, The effect of alloying element on properties of TS 1.8 GPa grade hot-stamped parts. CAMP-ISIJ, 21, 597–598 (2008)Google Scholar
  64. 64.
    M. Nagumo, T. Yagi, H. Saitoh, Deformation-induced defects controlling fracture toughness of steel revealed by tritium desorption behaviors. Acta Mater. 48(4), 943–951 (2000)CrossRefGoogle Scholar
  65. 65.
    H. Fuchigami, H. Minami, M. Nagumo, Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure. Philos. Mag. Lett. 86(1), 21–29 (2006)CrossRefGoogle Scholar
  66. 66.
    S. Yamasaki, T. Takahashi, Evaluation method of delayed fracture property of high strength steels. Tetsu-to-Hagane 83(7), 454–459 (1997)CrossRefGoogle Scholar
  67. 67.
    M. Matsumoto, Y. Takemoto, T. Senuma, Influence of microstructures on hydrogen embrittlement susceptibility of hot stamped ultrahigh strength components, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 55–64Google Scholar
  68. 68.
    A. Tokizawa, K. Yamamoto, Y. Takemoto, T. Senuma, Development of 2000 MPa class hot stamped steel components with good toughness and high resistance against delayed fracture, in 4th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Luleå, Sweden (2013), pp. 9–12Google Scholar
  69. 69.
    S. Tateyama, R. Ishio, K. Hayashi, T. Sue, Y. Takemoto, T. Senuma, Microstructures and mechanical properties of V and/or Nb bearing ultrahigh strength hot stamped steel components. Tetsu-to-Hagane 100(9), 1114–1122 (2014)CrossRefGoogle Scholar
  70. 70.
    K. Yamamoto, K. Hidaka, K. Morioka, T. Sue, Y. Takemoto, T. Senuma, Microstructural control for improving productivity and mechanical properties of hot-stamped products. J. Jpn Soc. Technol. Plast. 54(625), 137–142 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Billur Makine Ltd.AnkaraTurkey
  2. 2.Atılım UniversityAnkaraTurkey
  3. 3.Okayama UniversityOkayamaJapan

Personalised recommendations