Advertisement

Blank Materials

  • Eren Billur
  • Hyun-Sung Son
Chapter

Abstract

All sheet metal forming operations start with the blank material. The final part properties are dependent on the incoming material properties and how they could be changed during the process. To engineer the final part, it is essential to understand the incoming blank material. This chapter discusses the most common 22MnB5 steel, and other steel grades already in use or proposed to be used in hot stamping processes. Incoming blank could be uncoated or coated. Coatings can affect the final properties due to scale formation, decarburization and by the presence of microcracks. In the last decade, tailored blanks have been used in a number of automotive applications. The last section of this chapter summarizes Tailor Rolled, Patchwork, Tailor Welded blanks, and their combinations.

References

  1. 1.
    H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210(15), 2103–2118 (2010)CrossRefGoogle Scholar
  2. 2.
    T.K. Eller, L. Greve, M.T. Andres, M. Medricky, A. Hatscher, V.T. Meinders, A.H. van den Boogaard, Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties. J. Mater. Process. Technol. 214(6), 1211–1227 (2014)CrossRefGoogle Scholar
  3. 3.
    C.W. Lee, W.S. Choi, Y.R. Cho, B.C.D. Cooman, Microstructure evolution of a 55 wt. hardening steel during rapid heating. Surf. Coat. Technol. 281, 35–43 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Naderi, Hot stamping of ultra high strength steels. PhD Dissertation, RWTH Aachen, Germany (2007)Google Scholar
  5. 5.
    M. Spittel, T. Spittel, Steel Symbol/Number: 22MnB5/1.5528 (Springer, Berlin, 2009), pp. 930–935CrossRefGoogle Scholar
  6. 6.
    S. Flachstahl, 22MnB5 boron alloyed quenched and tempered steel. Product catalogue (2014)Google Scholar
  7. 7.
    A.K. Steel, ULTRALUME Aluminized Type 1 Press Hardenable Boron Steel. Product catalogue (2016)Google Scholar
  8. 8.
    T. Vietoris, New developments in PHS: materials, coatings, production methods. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI (2011)Google Scholar
  9. 9.
    ArcelorMittal, Extract from the product catalogue (2015). Accessed 10- June 2015Google Scholar
  10. 10.
    BaoSteel, Automotive advanced high strength steels. Product catalogue (2013)Google Scholar
  11. 11.
    B. Macek, Optimization side crash performance using a hot-stamped B-pillar. Presented at Great Designs in Steel Seminar (2006)Google Scholar
  12. 12.
    K. Hikita, Properties of new TS1800 MPa grade hot staming steel and components. Presented at Materials in Car Body Engineering 2012, May 10–11, Bad Nauheim, Germany (2012)Google Scholar
  13. 13.
    J.B. Nam, Development of new auto steels and application technology, in China Automotive Steel Conference, World Steel/CISA (2013)Google Scholar
  14. 14.
    Posco, Automotive steel data book (2016)Google Scholar
  15. 15.
    SSAB, Docol 1500 Bor. Product catalogue (2013)Google Scholar
  16. 16.
    SSAB, DOCOL PHS 1500. Product catalogue (2015)Google Scholar
  17. 17.
    ThyssenKrupp Steel Europe, Warmumformung im Automobilbau. Die Bibliothek der Technik (2012)Google Scholar
  18. 18.
    E. Hilfrich, Trends and potentials of new hotforming steels. Presented at Insight Edition Conference, September 19th, Neckarsulm, Germany (2012)Google Scholar
  19. 19.
    ThyssenKrupp Steel Europe, Mangan-bor-stähle für die warmumformung. Product catalogue (2014)Google Scholar
  20. 20.
    I.M. Gonzalez, O. Straube, Development of zinc coated parts for hotstamping, in Proceedings of New Developments in Sheet Metal Forming Conference, Stuttgart, Germany (2016), pp. 265–276Google Scholar
  21. 21.
    T. Kurz, New developments in zinc coated steel for press hardening. Presented at Insight Edition Conference, September 20–21, Gothenburg, Sweden (2011)Google Scholar
  22. 22.
    Y. Bi, Development of advanced automotive materials at WISCO. Presented at the State Key Lab of Rolling and Automation (RAL), Northeastern University (2014)Google Scholar
  23. 23.
    J. Komenda, R. Sandström, M. Tukiainen, Multiple regression analysis of jominy hardenability data for boron treated steels. Steel Res. 68(3), 132–137 (1997)CrossRefGoogle Scholar
  24. 24.
    H. Lanzerath, Simulation: enabler for the efficient design of lightweight boron intensive body structures. Presented at Insight Edition Conference, September 20–21, Gothenburg, Sweden (2011)Google Scholar
  25. 25.
    D. Wenk, Global capability: hot stamping. Presented at Global Automotive Lightweight Materials Asia 2014, Shanghai, China, March 26–27 (2014)Google Scholar
  26. 26.
    J. Overrath, F.J. Lenze, S. Sikora, Aktuelle entwicklung der warmumformung im automobilen fahrzeugbau. Bauteile der Zukunft–Methoden und Prozesse, Tagungsband zum 30 (2010)Google Scholar
  27. 27.
    S. Graff, T. Gerber, F.J. Lenze, S. Sikora, About the simulation of microstructure evolution in hot sheet stamping process and the correlation of resulting mechanical properties and crash-performance. In 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 323–330Google Scholar
  28. 28.
    H.W. Lee, K.-H. Chung, A new body concept for electric vehicle. Presented at Materials in Car Body Engineering 2012, May 11, Bad Nauheim, Germany (2012)Google Scholar
  29. 29.
    M. Garcia, Remote laser welding. Presented at European Automotive Laser Applications (EALA) 2013, February 19-20, Bad Nauheim, Germany (2013)Google Scholar
  30. 30.
    Y. Zhong, Recently Progress of AHSS in BAOSTEEL, in Presented at Driving Steel 2016, December 5–7, Kuala Lumpur, Malaysia (2016)Google Scholar
  31. 31.
    ArcelorMittal Flat Carbon Europe S.A. ArcelorMittal Automotive Product Offer Europe, Android App, V1.0 (2015)Google Scholar
  32. 32.
    H. Matsuoka, K. Fujihara, Mazda cx-5. Presented at EuroCarBody 2011, October 18–20, Bad Nauheim, Germany (2011)Google Scholar
  33. 33.
    Renault Media Services, http://media.renault.com
  34. 34.
    SSAB, Data sheet 2115, Docol PHS 1800 (2017)Google Scholar
  35. 35.
    O. Hoffmann, Lightweight steel design in the modern vehicle body. In Werkstoff-Forum Intelligenter Leichtbau. Hannover, Germany (2011)Google Scholar
  36. 36.
    voestalpine Steel Division. phs-ultraform®data sheet \(\bullet \) 03/2017 (2017)Google Scholar
  37. 37.
    H. Mohrbacher, M. Maikranz-Valentin, Recent progress in the metallurgical development of press hardening steel with improved application properties. Presented at Materials in Car Body Engineering 2014, May 13–14, Bad Nauheim, Germany (2014)Google Scholar
  38. 38.
    J. Mura, T. Gerber, S. Sikora, F.-J. Lenze, MBW1900 mit mikrolegierung zur optimierung der technologischen eigenschaften nach dem presshärten, in Tagungsband zum 7. Erlanger Workshop Warmblechumformung 2012 (2012), pp. 1–10Google Scholar
  39. 39.
    K. Lee, J.-H. Kim, S.-Y. Kwak, Y.-R. Cho, S. Choo, K.-G. Chin, Recent developments of automotive sheet steels. Presented at Materials in Car Body Engineering 2014, May 13–14, Bad Nauheim, Germany (2014)Google Scholar
  40. 40.
    SSAB, Let’s talk about boron steel. Product catalogue (2015)Google Scholar
  41. 41.
    J. Bian, H. Mohrbacher, Novel alloying design for press hardening steels with better crash performance. Presented at AIST Symposium, Vail, Colorado, USA (2013)Google Scholar
  42. 42.
    K. Fahlström, Laser welding of boron steels for light-weight vehicle applications. Licentiate Thesis, Högskolan Väst, Sweden (2015)Google Scholar
  43. 43.
    ThyssenKrupp Steel Europe. Product information for manganese-boron steel for hot forming (2016)Google Scholar
  44. 44.
    C. Wang, M. Maoqiu Wang, J. Shi, W. Hui, H. Dong, Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel. J. Mater. Sci. Technol. 23(05), 659 (2007)Google Scholar
  45. 45.
    D.D. Múnera, A. Pic, D. Abou-Khalil, F. Shmit, F. Pinard, Innovative press hardened steel based laser welded blanks solutions for weight savings and crash safety improvements. SAE Int. J. Mater. Manf. 1, 472–479, 04 (2008)CrossRefGoogle Scholar
  46. 46.
    F. D’Aiuto, M.M. Tedesco, Development of new structural components with innovative materials and technological solutions. Presented at Materials in Car Body Engineering 2015, April 22–23, Bad Nauheim, Germany (2015)Google Scholar
  47. 47.
  48. 48.
    H. Ljungqvist, K. Amundsson, O. Lindblad, The all-new Volvo XC90 car body. Presented at EuroCarBody 2014, October 21–23, Bad Nauheim, Germany (2014)Google Scholar
  49. 49.
    voestalpine Media services, http://www.voestalpine.com/group/en/press
  50. 50.
    W.S. Choi, B.C. De Cooman, Characterization of the bendability of press-hardened 22MnB5 steel. Steel Res. Int. 85(5), 824–835 (2014)CrossRefGoogle Scholar
  51. 51.
    D. Pireronek, L. Kessler, H. Richter, S. Myslowicki, Virtuelle produktentwicklung und crashauslegung von stahl-werkstoffverbundsystemen, in 14. German LS-Dyna Forum, 10–12.10.2016, Bamberg (2016)Google Scholar
  52. 52.
    H. Ferkel, J.N. Hoffmann, L. Keßler, Resource gentle light weight construction for today’s and oncoming mobility, in The International Conference on New Development in Sheet Metal Forming Technology, Stuttgart, Germany (2012), pp. 1–16Google Scholar
  53. 53.
    K.H. Hu, G.W. Feng, X.D. Liu, R.D. Han, The effect of heating process on strength and the original austenite grain size of hot forming parts, in Innovative Research in Hot Stamping Technology. Advanced Materials Research, vol. 1063 (Trans Tech Publications, Switzerland, 2015), pp. 28–31CrossRefGoogle Scholar
  54. 54.
    K. Liu, B. Chi, Y. Zhang, J. Li, Constitutive analysis on thermal-mechanical properties of WHT1300HF high strength steel, in Proceedings of SAE-China Congress 2015: Selected Papers (Springer, Singapore, 2016), pp. 309–316Google Scholar
  55. 55.
    BaoSteel, Hot-rolled pickled automotive steel sheets. Product catalogue (2010)Google Scholar
  56. 56.
    T. Fröhlich, Maximum safety and lightweight potential due to use of new high strength steels. Presented at Outokumpu Experience 2013, May 22–23, London, UK (2013)Google Scholar
  57. 57.
    P.-O. Santacreu, G. Badinier, J.-B. Moreau, J.-M. Herbelin, Fatigue properties of a new martensitic stainless steel for hot stamped chassis parts, in SAE Technical Paper (SAE International, 2015), p. 4Google Scholar
  58. 58.
    J.M. Herbelin, 1000–2000 MPa Martensitic stainless steels for flexible hot forming processes. Presented at Materials in Car Body Engineering 2014, May 13–14, Bad Nauheim, Germany (2014)Google Scholar
  59. 59.
    J.M. Herbelin, MaX: martensitic stainless steel for hot stamping. Product catalogue (2015)Google Scholar
  60. 60.
    G. Badinier, J.-D. Mithieux, P.-O. Santacreu, J.-M. Herbelin, Development of a 1.8 GPa martensitic stainless steel for hot stamping application, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 715–723Google Scholar
  61. 61.
    G. Badinier, J.-B. Moreau, B. Petit, C. Boissy, J.-D. Mithieux, S. Saedlou, J. Paegle, Development of press hardening stainless steels for body-in-white application, in 6th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Atlanta, GA, USA (2017), pp. 77–84Google Scholar
  62. 62.
    Q. Han, W. Bi, X. Jin, W. Xu, L. Wang, X. Xiong, J. Wang, P. Belanger, Low temperature hot forming of medium-Mn steel, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 381–389Google Scholar
  63. 63.
    I.A. Mendieta, M.A. Telleria, J.P. Drillet, J.D. Puerta Velasquez, M. Alsmann, J. Clobes, S. Bruschi, A. Ghiotti, European commission. directorate-general for research, and innovation. Green Press Hardening Steel Grades (GPHS): Final Report. EUR (Luxembourg. Online). Publications Office (2015)Google Scholar
  64. 64.
    Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, J.W. Yan, An introduction to medium-Mn steel: metallurgy, mechanical properties and warm stamping process. Mater. Design 94, 424–432 (2016)CrossRefGoogle Scholar
  65. 65.
    Y.-K. Lee, J. Han, Current opinion in medium manganese steel. Mater. Sci. Technol. 31(7), 843–856 (2015)CrossRefGoogle Scholar
  66. 66.
    H.L. Yi, P.J. Du, B.G. Wang, A new invention of press-hardened steel achiving 1880 MPa tensile strength combined with 16% elongation in hot-stamped, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 725–734Google Scholar
  67. 67.
    R. Rana, C.H. Carson, J.G. Speer, Hot forming response of medium manganese transformation induced plasticity steels, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 391–400,Google Scholar
  68. 68.
    T. Kurz, P. Larour, J. Lackner, T. Steck, G. Jesner, Press-hardening of zinc coated steel - characterization of a new material for a new process. IOP Conf. Ser.: Mater. Sci. Eng. 159(1), 012025 (2016)CrossRefGoogle Scholar
  69. 69.
    H.W. Tamler, J.-U. Becker, R. Wunderlich, K.E. Friedrich, P. Rademacher, TriBond®-: hot-rolled clad strip, customized steel composite material from coil. ThyssenKrupp techforum 1, 18–23 (2006)Google Scholar
  70. 70.
    ThyssenKrupp Steel Europe. Multi-layer composite for weight reduction: TriBond. Press Release, 2014Google Scholar
  71. 71.
    ThyssenKrupp Steel Europe. TRIBOND ®- high strength and high ductility. Product catalogue (2016)Google Scholar
  72. 72.
    ATZ/MTZ (Wiesbaden), The Project ThyssenKrupp InCar Plus: Solutions for Automotive Efficiency. ATZ/MTZ extra (Springer Vieweg, Berlin, 2014)Google Scholar
  73. 73.
    J. Wang, R.W. Hyland Jr, Zinc coated steel with inorganic overlay for hot forming, May 17 2012. US Patent App. 13/317,819Google Scholar
  74. 74.
    G. Frenzer, Nano-x gmbh x-tec®and alsi®coat products against scale formation on steel. Presentation at Nano-X (2015)Google Scholar
  75. 75.
    R.G. Baggerly, R.A. Drollinger, Determination of decarburization in steel. J. Mater. Eng. Perform. 2(1), 47–50 (1993)CrossRefGoogle Scholar
  76. 76.
    G.E. Totten, Steel Heat Treatment: Metallurgy and Technologies (CRC Press, Boca Raton, 2006)Google Scholar
  77. 77.
    S. Kalpakjian, S.R. Schmid, Manufacturing Engineering and Technology (Prentice Hall, Englewood Cliffs, 2010)Google Scholar
  78. 78.
    P. Belanger, The future for press hardening in the automotive industry. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI, October (2011), p. 2011Google Scholar
  79. 79.
    M. Van Genderen, W. Verloop, J. Loiseaux et al., Zinc-coated boron steel, ZnX®: Direct hot forming for automotive applications, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 145–152Google Scholar
  80. 80.
    K. Lamprecht, G. Deinzer, A. Stich, J. Lechler, T. Stöhr, M. Merklein, Thermo-mechanical properties of tailor welded blanks in hot sheet metal forming processes, in IDDRG, Graz, Austria (2010), pp. 37–48Google Scholar
  81. 81.
    J. Banik, Hot forming state-of-the-art and trends. Presented at Insight Edition Conference, September 20–21, Gothenburg, Sweden (2011)Google Scholar
  82. 82.
    D.W. Fan, B.C. De Cooman, State of the knowledge on coating systems for hot stamped parts. Steel Res. Int. 83(5), 412–433 (2012)CrossRefGoogle Scholar
  83. 83.
    O. Hoffmann, Environment oriented light weight design in steel, in Ökologischer Leichtbau in Stahl, Hannovermesse Werkstoff-Forum, Hannover, Germany (2012)Google Scholar
  84. 84.
    Henkel Corporation. BONDERITE®S-FN 7500 PH. Product catalogue (2014)Google Scholar
  85. 85.
    W. Fristad, New coil-applied coating for press-hardening steel. Proc. Galvatech 2015, 892–898 (2015)Google Scholar
  86. 86.
    J. Kondratiuk, P. Kuhn, Tribological investigation on friction and wear behaviour of coatings for hot sheet metal forming. Wear 270(11–12), 839–849 (2011)CrossRefGoogle Scholar
  87. 87.
    R. Neugebauer, F. Schieck, S. Polster, A. Mosel, A. Rautenstrauch, J. Schönherr, N. Pierschel, Press hardening – an innovative and challenging technology. Arch. Civil Mech. Eng. 12(2), 113–118 (2012)CrossRefGoogle Scholar
  88. 88.
    X. Bano, J.P. Laurent, Heat treated boron steels in the automotive industry, in 39th Mechanical Working and Steel Processing Conference (1997), pp. 673–677Google Scholar
  89. 89.
    L. Vaissiere, J.P. Laurent, A. Reinhardt, Development of pre-coated boron steel for applications on PSA Peugeot Citroën and Renault bodies in white, in SAE Technical Paper (SAE International, 2002), p. 7Google Scholar
  90. 90.
    A. Reinhardt, Development of hot stamped ultra high strength steel parts on the Peugeot 307 and the Citroën C5. Presented at EuroCarBody 2001 - 3rd Global Car Body Benchmarking Conference, Bad Nauheim, Germany (2001)Google Scholar
  91. 91.
    P. Siebert, M. Alsmann, H.J. Watermeier, Influence of different heating technologies on the coating properties of hot-dip aluminized 22MnB5, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 457–464Google Scholar
  92. 92.
    K.S. Jhajj, Heat transfer modeling of roller hearth and muffle furnace. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada (2015)Google Scholar
  93. 93.
    M. Jönsson, The problem with melted Al-Si in the hot stamping furnace, in Advanced High Strength Steel and Press Hardening: Proceedings of the 3rd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2016) (World Scientific, Singapore, 2017), pp. 479–485Google Scholar
  94. 94.
    M. Windmann, A. Röttger, W. Theisen, Formation of intermetallic phases in Al-coated hot-stamped 22MnB5 sheets in terms of coating thickness and Si content. Surf. Coat. Technol. 246, 17–25 (2014)CrossRefGoogle Scholar
  95. 95.
    T. Vietoris, Hot stamping with USIBOR1500®. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI, September 15th (2010)Google Scholar
  96. 96.
    D.W. Fan, H.S. Kim, J.-K. Oh, K.-G. Chin, B.C. De Cooman, Coating degradation in hot press forming. ISIJ Int. 50(4), 561–568 (2010)CrossRefGoogle Scholar
  97. 97.
    K. Takagi, E. Nakanishi, T. Yoshida, Aluminum-coated structural member and production method, November 9 2004. US Patent 6,815,087Google Scholar
  98. 98.
    E.J. Watkins, Hot stamping market, materials, coatings, and developments. Presented at Schuler Hot Stamping Workshop, May 14, Dearborn, MI, USA (2013)Google Scholar
  99. 99.
    R. Aldén, Metallurgical investigation in weldability of aluminium silicon coated boron steel with different coating thickness. Bahcelor Degree Thesis, KTH Royal Institute of Technology, Stockholm, Sweden (2015)Google Scholar
  100. 100.
    S. Fujita, S.J. Maki, H.I. Yamanaka, M. Kurosak, Corrosion resistance after hot stamping of 22MnB5 steels aluminized with 80g/m2 c.w. and ZnO coating, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada, pp. 681–690 (2015)Google Scholar
  101. 101.
    T. Kurz, G. Luckeneder, T. Manzenreiter, H. Schwinghammer, A. Sommer, Zinc coated press-hardening steel - challenges and solutions, in SAE Technical Paper (SAE International, 2015), p. 4Google Scholar
  102. 102.
    M. Pfestorf, T. Laumann, Potenziale verzinkter warm umgeformter stähle, in Tagungsband zum 3. Erlanger Workshop Warmblechumformung (2008)Google Scholar
  103. 103.
    BMW PressClub Global, http://www.press.bmwgroup.com
  104. 104.
    D. Copeland, M. Pfestorf, The body in white of the new BMW 5 Series Gran Turismo. Presented at Great Designs in Steel, Livonia, MI, May 5th (2010)Google Scholar
  105. 105.
    The British Constuctional Steelwork Association, Ltd. Galvanizing structural steelwork: an approach to the management of liquid metal assisted cracking (2005)Google Scholar
  106. 106.
    P. Nash, Y.Y. Pan, The Ni Zn (Nickel Zinc) system. Journal of Phase Equilibria 8(5), 422 (1987)CrossRefGoogle Scholar
  107. 107.
    W.C. Verloop, Development of Zn-coated boron steel ZnX at Tata Steel, in Insight Edition Conference (2011)Google Scholar
  108. 108.
    C.W. Lee, D.W. Fan, I.R. Sohn, S.-J. Lee, B.C. De Cooman, Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall. Mater. Trans. A 43(13), 5122–5127 (2012)CrossRefGoogle Scholar
  109. 109.
    M. Fleischanderl, S. Kolnberger, J. Faderl, G. Landl, A.E. Raab, W. Brandstätter, Method for producing a hardened steel part, US Patent 8,021,497, 20 Sept 2011Google Scholar
  110. 110.
    G. Kim, Quality evlauation of Zn coated hot press forming steel. Presented at Materials in Car Body Engineering 2013, May 7–8, Bad Nauheim, Germany (2013)Google Scholar
  111. 111.
    J. Banik, M. Köyer, J. Mura, GammaProtect ® - always well protected. Presented at Materials in Car Body Engineering 2013, May 7–8, Bad Nauheim, Germany (2013)Google Scholar
  112. 112.
    C. Allely, J. Petitjean, T. Vietoris, Corrosion resistance of zinc based and aluminized coatings on press-hardened steels for automotive, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 153–160Google Scholar
  113. 113.
    K. Teshima, Challenges of high-efficiency hot forming processes at Honda. Presented at Forming in Car Body Engineering 2012, September 26–27, Bad Nauheim, Germany (2012)Google Scholar
  114. 114.
    S.P. Bhat, Steel grades and coatings for hot stamping, in 4th PHS Suppliers Forum (2016)Google Scholar
  115. 115.
    J.N. Belanger, P.J. Hall, J.J. Coryell, J.P. Singh, Automotive body press-hardened steel trends, in International Symposium on New Developments in Advanced High-Strength Sheet Steels (2013), pp. 239–250Google Scholar
  116. 116.
    American Society of Metals, ASM Handbook ofCorrosion", vol. 13 (ASM International, 1992)Google Scholar
  117. 117.
    Z. Ghanbari, Zinc coated sheet steel for press hardening. Master’s Thesis, Colorado School of Mines, Golden, CO, USA (2014)Google Scholar
  118. 118.
    J. Faderl, R. Kelsch, Galvanized press-hardening steels. Presented at Insight Edition Conference, June 24, Bremen (2015)Google Scholar
  119. 119.
    I. Martin, M. López, P. Raya, A. Sunden, D. Berglund, K. Isaksson, S. Isaksson, Press systems and methods, US Patent 9,492,859, 15 Nov 2016Google Scholar
  120. 120.
    C. Hofer, T. Kurz, H. Clemens, R. Schnitzer, Atom probe study of prior austenite grain boundaries of zinc-coated press hardened steel, in 6th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Atlanta, GA, USA (2017), pp. 383–390Google Scholar
  121. 121.
    P. Belanger, New Zn multistep hot stamping innovation. Presented at Great Designs in Steel 2017 (2017)Google Scholar
  122. 122.
    Tata Steel, Magizinc®auto. Product Catalogue (2015)Google Scholar
  123. 123.
    L. Dormegny, Efficient lightweighting with new press hardenable steels. AMS Webinar (2017)Google Scholar
  124. 124.
    S. Sepeur, The company Nano-X GmbH: products for the automotive industry. Presentation at Deutsche Börse, July 10th, Frankfurt, Germany (2006)Google Scholar
  125. 125.
    W. Runge, Technology Entrepreneurship: A Treatise on Entrepreneurs and Entrepreneurship for and in Technology Ventures, vol. 2 (KIT Scientific Publishing, 2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Billur Makine Ltd.AnkaraTurkey
  2. 2.Atılım UniversityAnkaraTurkey
  3. 3.POSCO Global R&D CenterIncheonSouth Korea

Personalised recommendations