Metallurgy of Steels

  • Barıs ÇetinEmail author
  • Halim Meço


In hot stamping, typically, C-Mn-B alloyed steels are used and the process involves phase transformations. Thus, a clear understanding of the effects of alloying elements, different phases of steels, and their kinematics are critical for comprehensive understanding of the process.


  1. 1.
    K.H. Grote, E.K. Antonsson, Springer Handbook of Mechanical Engineering (Springer, Würzburg, 2009)CrossRefGoogle Scholar
  2. 2.
    W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering, vol. 21 (Wiley, New York, 2013)Google Scholar
  3. 3.
    B.C. De Cooman, O. Kwon, K.G. Chin, State-of-the-knowledge on TWIP steel. Mater. Sci. Technol. 28(5), 513–527 (2012)CrossRefGoogle Scholar
  4. 4.
    G.E. Totten, Steel Heat Treatment: Metallurgy and Technologies (CRC Press, Boca Raton, 2006)Google Scholar
  5. 5.
    G. Krauss, Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Mater. Trans. B 32(2), 205–221 (2001)CrossRefGoogle Scholar
  6. 6.
    D. Deng, FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater. Des. 30(2), 359–366 (2009)CrossRefGoogle Scholar
  7. 7.
    D.C. Madeleine, The Pearlite Transformation (Springer, Berlin, 2004), pp. 195–208Google Scholar
  8. 8.
    D.R. Askeland, W.J. Wright, Essentials of Materials Science & Engineering (Cengage Learning, Boston, 2013)Google Scholar
  9. 9.
    M. Maalekian, The effects of alloying elements on steels (i). Christ. Doppler Lab. Early Stages Precip. 23, 221–230 (2007)Google Scholar
  10. 10.
    H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210(15), 2103–2118 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Naderi, Hot Stamping of Ultra High Strength Steels Google Scholar
  12. 12.
    S. Bruschi, G. Liu, Hot Stamping-Comprehensive Materials Processing (Elsevier, Amsterdam, 2014)CrossRefGoogle Scholar
  13. 13.
    American Society of Metals, ASM Handbook of “Welding and Brazing”, vol. 06, , 2nd edn. (ASM International, 1993)Google Scholar
  14. 14.
    S. Graff, T. Gerber, F.J. Lenze, S. Sikora, About the simulation of microstructure evolution in hot sheet stamping process and the correlation of resulting mechanical properties and crash-performance, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 323–330Google Scholar
  15. 15.
    ArcelorMittal Flat Carbon Europe S.A. ArcelorMittal Automotive Product Offer Europe, Android App, V1.0 (2015)Google Scholar
  16. 16.
    H. Mohrbacher, Martensitic automotive steel sheet - fundamentals and metallurgical optimization strategies, in Innovative Research in Hot Stamping Technology, vol. 1063. Advanced Materials Research (Trans Tech Publications, 2015), pp. 130–142Google Scholar
  17. 17.
    American Society of Metals, ASM Handbook of "Heat Treating, 3rd printing", vol. 4 (ASM International, 1995)Google Scholar
  18. 18.
    H. Aydin, E. Essadiqi, I.H. Jung, S. Yue, Development of 3rd generation AHSS with medium Mn content alloying compositions. Mater. Sci. Eng.: A 564, 501–508 (2013)CrossRefGoogle Scholar
  19. 19.
    Q. Han, W. Bi, X. Jin, W. Xu, L. Wang, X. Xiong, J. Wang, P. Belanger, Low temperature hot forming of medium-Mn steel, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 381–389Google Scholar
  20. 20.
    W. Alqhadafi, Laser welding of boron and bainitic steels (2012)Google Scholar
  21. 21.
    Kangying Zhu, Carla Oberbillig, Céline Musik, Didier Loison, Thierry Iung, Effect of b and b+nb on the bainitic transformation in low carbon steels. Mater. Sci. Eng.: A 528(12), 4222–4231 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Naderi, M. Ketabchi, Abbasi M., Bleck W., Analysis of microstructure and mechanical properties of different boron and non-boron alloyed steels after being hot stamped. Procedia Eng. 10, 460–465 (2011)CrossRefGoogle Scholar
  23. 23.
    ArcelorMittal. Extract from the product catalogue (2015). Accessed 10 June 2015Google Scholar
  24. 24.
    SSAB, Docol 22MnB5 - cold rolled boron steel for hardening in water or oil. Product Catalogue (2011)Google Scholar
  25. 25.
    J.R. Davis, Carbon and Alloy Steels (ASM International, 1996)Google Scholar
  26. 26.
    Salzgitter Flachstahl, 22MnB5 boron alloyed quenched and tempered steel. Product catalogue (2014)Google Scholar
  27. 27.
    C. Wang, M. Wang, J. Shi, W. Hui and H. Dong, Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel. J. Mater. Sci. Technol. 23(05), 659 (2007)Google Scholar
  28. 28.
    J. Wang, C. Enloe, J. Singh, C. Horvath, Effect of prior austenite grain size on impact toughness of press hardened steel. SAE Int. J. Manuf. 9, 488–493, 04 (2016)Google Scholar
  29. 29.
    H. Mohrbacher, Influence of alloy modifications and microstructure on properties and crash performance of press hardened steel components, in 6th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Atlanta, GA, USA (2017), pp. 213–222Google Scholar
  30. 30.
    S. Tateyama, R. Ishio, K. Hayashi, T. Sue, Y. Takemoto, T. Senuma, Microstructures and mechanical properties of V and/or Nb bearing ultrahigh strength hot stamped steel components. Tetsu-to-Hagane 100(9), 1114–1122 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Vaissiere, J.P. Laurent, A. Reinhardt, Development of pre-coated boron steel for applications on PSA Peugeot Citroën and Renault bodies in white, in SAE Technical Paper, vol. 7. (SAE International, 2002)Google Scholar
  32. 32.
    American Society for Metals. Ohio. Atlas of Isothermal Transformation and Cooling Transformation Diagrams (Metals Park, Ohio, 1977)Google Scholar
  33. 33.
    C. Şimşir, C.H. Gür, An FEM based framework for simulation of thermal treatments: application to steel quenching. Comput. Mater. Sci. 44(2), 588–600 (2008)CrossRefGoogle Scholar
  34. 34.
    F.F. Li, M.W. Fu, J.P. Lin, Effect of cooling path on the phase transformation of boron steel 22MnB5 in hot stamping process. Int. J. Adv. Manuf. Technol. 81(5), 1391–1402 (2015)CrossRefGoogle Scholar
  35. 35.
    G.-Z. Quan, T. Wang, L. Zhang, Research on the influence of hot stamping process parameters on phase field evolution by thermal-mechanical phase coupling finite element. Int. J. Adv. Manuf. Technol. 89(1), 145–161 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Koroschetz, K. Eriksson, O. Kragt, A. Ademaj, Production method for locally, graded presshardened components through process integration of a heating technology in combination with appropriate process control, in IDDRG 2016, Linz, Austria (2016), pp. 356–362Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FNSS Defense Systems Co. Inc., R&D CenterGölbaşi, AnkaraTurkey

Personalised recommendations