Advertisement

The Ecological Classification of Cave Animals and Their Adaptations

  • Francis G. Howarth
  • Oana Teodora Moldovan
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

Why certain animals lose features believed essential, like eyes, bodily color, and robustness, to live permanently underground has long intrigued biologists and laymen. Many of these features evolved independently and shared among diverse groups living in caves including both terrestrial and aquatic cavernicoles. The degree of change often correlates with the level of association of the species to caves. This association allowed development of a classification scheme to help understand the evolutionary ecology of cave communities. The refined scheme, called the Schiner-Racovitza system, is based on both morphology and ecology. The categories are troglobionts and stygobionts (animal species that obligately live underground on land or in water, respectively), troglophiles (animals that can live and reproduce in both underground and surface habitats), and trogloxenes (animals that regularly visit caves for food or refuge). Common adaptations to cave life involve morphology, behavior, and physiology. In addition to the conspicuous losses, many compensatory traits have evolved, such as longer appendages, longer and more slender body, more and larger sensory structures, and specialized mouthparts and tarsi. Modified behavioral traits include reduction in circadian rhythm, reduced dispersal ability, slower but nearly continuous activity, and modified mating behavior. Physiological adaptations include low metabolism rate, dietary changes, resistance to starvation, modified water balance mechanisms, tolerance to high CO2 and low O2, and increased longevity. Cave-adapted animals also display greater K-selection with fewer and larger eggs and reduced life cycle.

Notes

Acknowledgments

We are grateful to Jana Bedek, Pawel Jaloszynski, William P Mull, Udo Schmidt, and Boris Sket for the permission to use their photos and to Ľubomir Kováč and Stuart Halse for their corrections and suggestions. OTM acknowledges the financial support from the Romanian Academy and the grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III.

References

  1. Adis J, Caoduro G, Messner B et al (1997) On the semi-aquatic behavior of a new troglobitic millipede from northern Italy (Diplopoda, Polydesmida: Polydesmidae). Entomol Scand Suppl 51:301–306Google Scholar
  2. Ahearn G, Howarth FG (1982) Physiology of cave arthropods in Hawaii. J Exp Zool 222:227–238CrossRefGoogle Scholar
  3. Bechler DL (1983) The evolution of agonistic behavior in amblyopsid fishes. Behav Ecol Sociobiol 12:35CrossRefGoogle Scholar
  4. Borowsky R (2008) Restoring sight in blind cavefish. Curr Biol 18:R23–R24PubMedCrossRefPubMedCentralGoogle Scholar
  5. Borowsky R (2013) Eye regression in blind Astyanax cavefish may facilitate the evolution of an adaptive behavior and its sensory receptors. BMC Biol 11:81PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brancelj A (2004) Crustacea: Copepoda. In: Gunn J (ed) Encyclopedia of caves and karst science. New York London, Fitzroy Dearborn, pp 259–261Google Scholar
  7. Camacho AI (1992) A classification of the aquatic and terrestrial subterranean environments and their associated fauna. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 57–103Google Scholar
  8. Cazals M, Juberthie-Jupeau LJ (1983) Ultrastructure of a tubular sternal gland in the males of Speonomus hydrophilus (Coleoptera: Bathyscinae). Can J Zool 61:673–681CrossRefGoogle Scholar
  9. Christiansen K (1962) Proposition pour la classification des animaux cavernicoles. Spelunca Mem 2:76–78Google Scholar
  10. Christiansen K (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537CrossRefGoogle Scholar
  11. Christiansen K (2012) Morphological adaptations. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 517–527CrossRefGoogle Scholar
  12. Cuénot L (1911) La Genesis de las Especes Animals. Librairie Félix Alcan, ParisGoogle Scholar
  13. Cooper MR, Cooper JE (1976) Growth and longevity in cave crayfishes. ASB Bull 23:52Google Scholar
  14. Culver DC (1982) Cave life. Harvard University Press, CambridgeCrossRefGoogle Scholar
  15. Culver DC, Holsinger JR, Christman MC et al (2010) Morphological differences among eyeless amphipods in the genus Stygobromus dwelling in different subterranean habitats. J Crustacean Biol 30:68–74CrossRefGoogle Scholar
  16. Dattagupta S, Schaperdoth I, Montanari A et al (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3:935–943PubMedCrossRefPubMedCentralGoogle Scholar
  17. Deharveng L, Christian E (1984) Gnathofolsomia palpata n. g., n. sp., eine Isotomide mit abgewandelten Mundwerkzeugen aus österreichischen Höhlen (Insecta, Collembola). Verh Zool-Bot Ges Österr 122:97–101Google Scholar
  18. Deleurance-Glaçon S (1963) Recherches sur les Coléoptères cavernicoles troglobies de la sous-famille des Bathysciinae. Ann Sci Nat Zool 5:1–172Google Scholar
  19. Deleurance S, Deleurance EP (1964) Reproduction et cycle évolutif larvaire des Aphaenops (A. cerberus Dieck, A. crypticola Linder), Insectes Coléoptères cavernicoles. C R Acad Sci III-Vie 258:4369–4370Google Scholar
  20. Derkarabetian S, Steinmann DB, Hedin M (2010) Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from montane western North America. PLOS One 5:e10388PubMedPubMedCentralCrossRefGoogle Scholar
  21. Duboué ER, Keene AC, Borowsky RL (2011) Evolutionary convergence on sleep loss in cavefish populations. Curr Biol 21:671–676PubMedCrossRefPubMedCentralGoogle Scholar
  22. Durand JP (1971) Recherches sur l’appareil visuel du Protée, Proteus anguinus Laurenti, Urodele hypogé. Annales de Spéléologie 26:497–824Google Scholar
  23. Durand JP (1976) Occular development and involution in the European cave salamander, Proteus anguinus Laurenti. Biol Bull 151:450–466PubMedCrossRefPubMedCentralGoogle Scholar
  24. Durand JP (1983) Données et hypothèses sur l’évolution des Proteidae. Bull Soc Zool Fr 108:617–630Google Scholar
  25. Eigenman CH (1909) Cave vertebrates of North America. Washington DC, Carnegie Institution of WashingtonGoogle Scholar
  26. Enghoff H (1985a) A new species of Trogloiulus with modified mouthparts. With a revised key to the species and new records of the genus (Diplopoda, Julida: Julidae). Lavori Societa Veneziana di Scienze Naturali 10:69–77Google Scholar
  27. Enghoff H (1985b) Modified mouthparts in hydrophilous cave millipedes (Diplopoda). Bijdr Dierkd 55:67–77Google Scholar
  28. Enghoff H, Caoduro G, Adis J et al (1997) A new cavernicolous semiaquatic species of Serradium (Diplopoda, Polydesmidae) and its terrestrial, sympatric congener. With notes on the genus Serradium. Zool Scr 26:270–290CrossRefGoogle Scholar
  29. Fennah RG (1973) The cavernicolous fauna of Hawaiian lava tubes, part 4. Two new blind Oliarus (Fulgoroidea: Cixiidae). Pac Insects 15:181–184Google Scholar
  30. Fišer C, Kovacec Ž, Pustovrh M et al (2010) The role of predation in the diet of Niphargus (Amphipoda: Niphargidae). Speleobiology Notes 2:4–6Google Scholar
  31. Fišer C, Blejec A, Trontelj P (2012) Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biol Lett 8:578–581PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fišer Ž, Novak L, Luštrik R et al (2015) Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Naturwissenschaften 103:1–12Google Scholar
  33. Gibert J, Mathieu J (1980) Relations entre les teneurs en protéines, glucides et lipides au cours du jeûne expérimental chez deux espèces de Niphargus peuplant des biotopes différents. Crustaceana Suppl 6:137–147Google Scholar
  34. Ginet R (1960) Écologie, éthologie et biologie de Niphargus. Cycle biologique de Niphargus. Annales de Spéléologie 15:239–376Google Scholar
  35. Ginet R, Decou V (1977) Initiation à la biologie et à lʼécologie souterraines. Delarge, ParisGoogle Scholar
  36. Hadley NF, Ahearn GA, Howarth FG (1981) Water and metabolic relations of cave adapted and epigean lycosid spiders in Hawaii. J Arachnol 9:215–222Google Scholar
  37. Hervant F, Mathieu J, Barré H et al (1997) Comparative study on the behavioural, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp Biochem Physiol 118:1277–1283CrossRefGoogle Scholar
  38. Hervant F, Mathieu J, Messana G (1998) Oxygen consumption and ventilation in declining oxygen tension and posthypoxic recovery in epigean and hypogean crustaceans. J Crustacean Biol 18:717–727CrossRefGoogle Scholar
  39. Hervant F, Mathieu J, Durand JP (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204:269–281PubMedPubMedCentralGoogle Scholar
  40. Hervant F, Renault D (2002) Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. J Exp Biol 205:2079–2087PubMedPubMedCentralGoogle Scholar
  41. Hoch H, Howarth FG (1989) Six new cavernicolous cixiid planthoppers in the genus Solonaima from Australia (Homoptera: Fulgoroidea). Syst Entomol 14:377–402CrossRefGoogle Scholar
  42. Hoch H, Howarth FG (1993) Evolutionary dynamics of behavioral divergence among populations of the Hawaiian cave-dwelling planthopper Oliarus polyphemus (Homoptera: Fulgoroidea). Pacific Sci 47:303–318Google Scholar
  43. Hoch H, Howarth FG (1999) Multiple cave invasions by species of the planthopper genus Oliarus in Hawaii (Homoptera: Fulgoroidea: Cixiidae). Zool J Linn Soc 127:453–475CrossRefGoogle Scholar
  44. Hoch H, Wessel A (2005) Communication by substrate-borne vibrations in cave planthoppers (Auchenorrhyncha: Hemiptera: Fulgoromorpha: Cixiidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. Physiology, behaviour, ecology and evolution. CRC-Taylor & Francis, Boca Raton, London, New York, pp 187–197Google Scholar
  45. Holsinger JR (1988) Troglobites: the evolution of cave-dwelling organisms. Am Sci 76:146–153Google Scholar
  46. Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406PubMedCrossRefPubMedCentralGoogle Scholar
  47. Howarth FG (1981) Community structure and niche differentiation in Hawaiian lava tubes. Chapter 7. In: Mueller-Dombois D, Bridges KW, Carson HL (eds) Island ecosystems: biological organization in selected Hawaiian communities. US/IBP synthesis series, Vol, vol 15. Hutchinson Ross Publishing Co., PA, pp 318–336Google Scholar
  48. Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389CrossRefGoogle Scholar
  49. Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77PubMedCrossRefPubMedCentralGoogle Scholar
  50. Howarth FG, Mull WP (1992) Hawaiian Insects and their Kin. University of Hawaii Press, HonoluluGoogle Scholar
  51. Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pacific Sci 44:207–218Google Scholar
  52. Hüppop K (1985) The role of metabolism in the evolution of cave animals. NSS Bulletin 47:136–146Google Scholar
  53. Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 159–188Google Scholar
  54. Hüppop K (2005) Adaptation to low food. In: Culver DC, White WB (eds) Encyclopedia of caves. Academic, Amsterdam, pp 4–10Google Scholar
  55. Iliffe TM, Kornicker LS (2009) Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson Contrib Mar Sci 38:269–280Google Scholar
  56. Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jeffery WR (2009) Evolution and development in the cavefish Astyanax. Curr Top Dev Biol 86:191–221PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jeffery WR, Strickler AG (2010) Development as an evolutionary process in Astyanax cavefish. In: Trajano E (ed) The biology of subterranean fishes. Academic, New YorkGoogle Scholar
  59. Jeffery WR, Strickler AG, Guiney S et al (2000) Prox 1 in eye degeneration and sensory compensation during development and evolution of the cavefish Astyanax. Dev Genes Evol 210:223–230PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jegla T, Poulson T (1968) Evidence of circadian rhythms in a cave crayfish. J Exp Zool 168:273–282CrossRefGoogle Scholar
  61. Jegla TC, Poulson TL (1970) Circanian rhythms-I. Reproduction in the cave crayfish, Orconectes pellucidus inermis. Comp Biochem Physiol 33:347–355CrossRefGoogle Scholar
  62. Joseph G (1882) Systematisches Verzeichnis der in den Tropfsteingrotten von Krain einheimischen Arthropoden nebst Diagnosen der vom Verfasser entdecken und bisher noch nicht beschriebenen Arten Berliner Entomol XXVGoogle Scholar
  63. Juberthie-Jupeau L, Cazals M (1984) Accouplement et comportement sexuel chez un Bathysciinae souterrain, Speonomus delarouzeei Fairm. Behav Proc 9:147–155CrossRefGoogle Scholar
  64. Jugovic J, Prevorčnik S, Aljancic G et al (2010) The atyid shrimp (Crustacea: Decapoda: Atyidae) rostrum: phylogeny versus adaptation, taxonomy versus trophic ecology. J Nat Hist 44:2509–2533CrossRefGoogle Scholar
  65. Kowalko JE, Rohner N, Rompani SB et al (2013) Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr Biol 23:1874–1883PubMedPubMedCentralCrossRefGoogle Scholar
  66. Konec M, Prevorčnik S, Sarbu SM et al (2015) Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea). J Evol Biol 28:864–875CrossRefGoogle Scholar
  67. Kuštor V, Novak T (1980) Individual differences in trapping activity of two underground beetle species. Mem Biospeol 7:77–84Google Scholar
  68. Langecker TG (2000) The effect of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world 30: Subterranean ecosystems. Elsevier Science, Amsterdam, pp 135–157Google Scholar
  69. Maguire B (1960) Lethal effect of visible light on cavernicolous ostracods. Science 132:226–227PubMedCrossRefPubMedCentralGoogle Scholar
  70. Malard F, Hervant F (2012) Responses to low oxygen. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 651–658Google Scholar
  71. Mathieu J, Gibert J (1980) Evolution des teneurs en protéines, glucides et lipides de Niphargus rhenorhodanensis Schellenberg comparé entre l’élevage en milieu naturel reconstitute et le jeûne expérimental. Crustaceana Suppl 6:128–136Google Scholar
  72. Matsuda R (1982) The evolutionary process in talitrid amphipods and salamanders in changing environments, with a discussion of “genetic assimilation” and some other evolutionary concepts. Can J Zool 60:733–749CrossRefGoogle Scholar
  73. McGaugh SE, Gross JB, Aken B et al (2014) The cavefish genome reveals candidate genes for eye loss. Nat Commun 5:5307PubMedPubMedCentralCrossRefGoogle Scholar
  74. Merker D, Gilbert H (1932) Die Wiederstandfähigkeit von Süsswasser-planarien in ultraviolettreichen Licht. Zool Jahrb Abt allg Zool Physiol Tiere 50:479–556Google Scholar
  75. Mermillod-Blondin F, Lefour C, Lalouette L et al (2013) Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J Exp Biol 216:1683–1694PubMedCrossRefPubMedCentralGoogle Scholar
  76. Moldovan O (1998) Sternal gland in the species of Bathysciola (Coleoptera, Cholevidae, Bathysciinae). Mem Biospeol 25:107–110Google Scholar
  77. Moldovan O (2003) Sex recognition at the subterranean Leptodirinae (Coleoptera, Cholevidae). II. Biochemical approach and data integration. Subterr Biol 1:99–110Google Scholar
  78. Moldovan O, Juberthie C (1994) Étude comparée et ultrastructurale de la glande sternale de quelques coléoptères Bathysciinae (Coleoptera, Catopidae). Mem Biospeol 21:97–101Google Scholar
  79. Moldovan O, Paredes Bartolome C (1998/1999) Fractal analysis of the behaviour of cave beetles (Coleoptera: Cholevidae: Bathysciinae). Trav Inst Speol “E. Racovitza” 37–38:217–222Google Scholar
  80. Moldovan OT, Jalzic B, Erichsen E (2004) Adaptation of the mouthparts in some subterranean Cholevinae (Coleoptera, Leiodidae). Nat Croat 13:1–18Google Scholar
  81. Moran D, Softley R, Warrant EJ (2015) The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv 1:1–9CrossRefGoogle Scholar
  82. Moritsch MM, Pakes MJ, Lindberg DR (2014) How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea). Organ Div Evol 14:225–235CrossRefGoogle Scholar
  83. Parzefall J (1976) Die Rolle der chemischen Information im Verhalten des Grottenolms Proteus anguinus Laur. (Proteidae, Urodela). Z Tierpsychol 42:29–49CrossRefGoogle Scholar
  84. Parzefall J (1983) Field observation in epigean and cave populations of Mexican characid Astyanax mexicanus (Pisces, Characidae). Mem Biospeol 10:171–176Google Scholar
  85. Parzefall J (1992) Behavioural aspects in animals living in caves. In: Camacho AI (ed) The natural history of Biospeleology. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 327–376Google Scholar
  86. Parzefall J, Durand JP, Richard B (1980) Chemical communication in Necturus maculosus and his cave-living relative Proteus anguinus (Proteidae, Urodela). Z Tierpsychol 53:133–138CrossRefGoogle Scholar
  87. Peck SB (1973) A systematic revision and evolutionary biology of the Ptomaphagus adelops. Bull Mus Comp Zool 145:29–162Google Scholar
  88. Plath M, Hauswaldt S, Moll K et al (2007) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulfide. Mol Ecol 16:967–976CrossRefGoogle Scholar
  89. Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 7:257–290CrossRefGoogle Scholar
  90. Poulson TL, Jegla TC (1969) Circadian rhythms in cave animals. In: Actes of the 4th international congress of speleology, Ljubljana, Yugoslavia, 4–5:193–195Google Scholar
  91. Poulson TL, White WB (1969) The cave environment. Science 3897:971–980CrossRefGoogle Scholar
  92. Prevorčnik S, Blejec A, Sket B (2004) Racial differentiation in Asellus aquaticus (L.) (Crustacea: Isopoda: Asellidae). Arch Hydrobiol 160:193–214CrossRefGoogle Scholar
  93. Protas ME, Hersey C, Kochanek D et al (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genet 38:107–111PubMedCrossRefPubMedCentralGoogle Scholar
  94. Protas ME, Trontelj P, Patel NHN (2011) Genetic basis of eye and pigment loss in the cave crustacean, Asellus aquaticus. P Natl Acad Sci USA 108:5702–5707CrossRefGoogle Scholar
  95. Racovitza EG (1907) Essay on biospeological problems. In: Moldovan OT (ed) Emil George Racovitza. Essay on biospeological problems—French, English, Romanian version (2006). Cluj-Napoca, Romania, Casa Cărţii de Ştiinţă, pp 127–183Google Scholar
  96. Riesch R, Schlupp I, Langerhans RB et al (2011) Shared and unique patterns of embryo development in extremophile Poeciliids. PLOS One 6:e27377PubMedPubMedCentralCrossRefGoogle Scholar
  97. Roff DA (1986) The evolution of wing dimorphism in insects. Evolution 40:1009–1020PubMedCrossRefPubMedCentralGoogle Scholar
  98. Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, LondonGoogle Scholar
  99. Rouch R (1968) Contribution à la connaissance des Harpacticides hypogés (Crustacés-Copépodes). Annales de Spéléologie 23:9–167Google Scholar
  100. Ruffo S (1957) Le attuali conoscenze sulla fauna cavernicola della Regione Pugliese. Mem Biogeogr Adriat 3:1–143Google Scholar
  101. Schatz A, Briegleb W, Sinapius F et al (1977) Rhythmic locomotor activity of the grottenolm (Proteus anguinus Laur.) and the gold fish (Carassius spec.) measured in a mine. J Interdiscipl Cycle Res 8:347–349CrossRefGoogle Scholar
  102. Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z Morph Tiere 61:255–316CrossRefGoogle Scholar
  103. Schemmel C (1980) Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. Anoptichthys. An example of apparent monofactorial inheritance by polygenes. Z Tierpsychol 53:9–22PubMedCrossRefPubMedCentralGoogle Scholar
  104. Schiner JR (1854) Fauna der Adelsberger- Lueger-und Magdalenen-Grotte. In: Schmidl A (ed) Grotten and Höhlen von Adelsberg. Lueg, Planina und Laas, Wien, BraunmüllerGoogle Scholar
  105. Schiødte JC (1849) Bidrag til den underjordisje Fauna. Vidensk. Selsk. Skr., 5 Raekke naturvidenskabelig Og Mathematisk Afdeling 2:1–39Google Scholar
  106. Schlegel P, Bulog B (1997) Population-specific behavioral electrosensitivity of the European blind cave salamander, Proteus anguinus. J Physiol 91:75–79Google Scholar
  107. Schlegel PA, Briegleb W, Bulog B et al (2006) Revue et nouvelles données sur la sensitivité a la lumiere et orientation non-visuelle chez Proteus anguinus, Calotriton asper et Desmognathus ochrophaeus (Amphibiens urodeles hypogés). Bull Soc Herp Fr 118:1–31Google Scholar
  108. Simčič T, Brancelj A (2007) The effect of light on oxygen consumption in two amphipod crustaceans – the hypogean Niphargus stygius and the epigean Gammarus fossarum. Mar Freshw Behav Phy 40:141–150CrossRefGoogle Scholar
  109. Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563CrossRefGoogle Scholar
  110. Soares D, Yamamoto Y, Strickler AG et al (2004) The lens has a specific influence on optic nerve and tectum development in the blind cavefish Astyanax. Dev Neurosci 26:308–317PubMedCrossRefPubMedCentralGoogle Scholar
  111. Soares D, Niemiller ML (2013) Sensory adaptations of fishes to subterranean environments. BioScience 63:274–283CrossRefGoogle Scholar
  112. Steffan WA (1973) Polymorphism in Plastosciara perniciosa. Science 182:1265–1266PubMedCrossRefPubMedCentralGoogle Scholar
  113. Stegner ME, Stemme T, Iliffe TM et al (2015) The brain in three crustaceans from cavernous darkness. BMC Neurosc 16:19CrossRefGoogle Scholar
  114. Teyke T (1990) Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol 35:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  115. Tobler M, Palacios M, Chapman LJ et al (2011) Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 65:2213–2228PubMedCrossRefPubMedCentralGoogle Scholar
  116. Tobler M, Henpita C, Basset B et al (2014) H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp Biochem Phys A 174:7–14CrossRefGoogle Scholar
  117. Trajano E, Carvalho MR (2017) Towards a biologically meaningful classification of subterranean organisms: a critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr Biol 22:1–26CrossRefGoogle Scholar
  118. Trajano E, Menna-Barreto L (1995) Locomotor activity pattern of Brazilian cave catfishes under constant darkness (Siluriformes, Pimelodidae). Biol Rhythm Res 26:341–353CrossRefGoogle Scholar
  119. Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence of cave communities. Evolution 66:3852–3865PubMedCrossRefPubMedCentralGoogle Scholar
  120. Turk S, Sket B, Sarbu S (1996) Comparison between some epigean and hypogean populations of Asellus aquaticus. Hydrobiologia 337:161–170CrossRefGoogle Scholar
  121. Turquin M-J, Barthelemy D (1985) The dynamics of a population of the troglobitic amphipod Niphargus virei Chevreux. Stygologia 1:109–117Google Scholar
  122. Uiblein F, Durand JP, Juberthie C et al (1992) Predation in caves: the effects of prey immobility and darkness on the foraging behaviour of two salamanders, Euproctus asper and Proteus anguis. Behav Proc 28:33–40CrossRefGoogle Scholar
  123. Vandel A (1964) Biospéologie - la biologie des animaux cavernicoles. Gauthier-Villars, ParisGoogle Scholar
  124. Vogt G, Štrus J (1999) Hypogean life-style fuelled by oil. Naturwissenschaften 86:43–45CrossRefGoogle Scholar
  125. Voituron Y, De Fraipont M, Issartel J et al (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms. Biol Lett 7:105–107PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wessel A, Hoch H, Asche M et al (2013) Founder effects initiated rapid species radiation in Hawaiian cave planthoppers. P Natl Acad Sci USA 110:9391–9396CrossRefGoogle Scholar
  127. Wilhelm F, Schindler D (2000) Reproductive strategies of Gammarus lacustris (Crustacea: Amphipoda) along an elevation gradient. Funct Ecol 14:413–422CrossRefGoogle Scholar
  128. Wilkens H (1992) Neutral mutations and evolutionary progress. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 403–422Google Scholar
  129. Wilkens H, Strecker U (2003) Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye-size and pigmentation. Biol J Linn Soc 80:545–554CrossRefGoogle Scholar
  130. Yamamoto Y, Byerly MS, Jackman WR et al (2009) Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Develop Biol 330:200–211PubMedCrossRefPubMedCentralGoogle Scholar
  131. Yoshizawa M, Jeffery WR (2008) Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye. J Exp Biol 211:292–299PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yoshizawa M, Gorički Š, Soares D et al (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Francis G. Howarth
    • 1
  • Oana Teodora Moldovan
    • 2
  1. 1.Bernice P. Bishop MuseumHonoluluUSA
  2. 2.Emil Racovitza Institute of Speleology, Romanian AcademyCluj NapocaRomania

Personalised recommendations