Physiography of the Caves

  • Stein-Erik LauritzenEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


Solutional (karst) and lava caves are the most extensive and frequent. Karst caves occur in carbonates, sulphates and halite; large lava tubes form in basalt. “Pseudokarst” caves include lava tubes, piping caves and caves in silicate rocks. Additional inhabitable voids occur in colluvial and alluvial deposits. The physiography of these cave habitats varies over a wide range of architectures and aggregate lengths. The size distribution of most cave voids is “fractal”, so that for a cave room passable to humans, there are several orders of magnitude for more voids of smaller sizes, capable of hosting biota. The internal environment of caves is characterized by lack of daylight, stable temperature and chemical regimes. Cave ventilation provides seasonal regimes of temperature and humidity that may support perennial ice deposits, at least in arctic and cold temperate regions.


  1. Atkinson T (1977) Carbon dioxide in the atmosphere of the unsaturated zone: an important control of groundwater hardness in limestones. J Hydrol 35:111–123CrossRefGoogle Scholar
  2. Aubrecht R, Lánczos T, Gregor M et al (2011) Sandstone caves on Venezuelan tepuis: return to pseudokarst? Geomorphology 132:351–365CrossRefGoogle Scholar
  3. Auler AS (2012) Quartzite caves of South America. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 635–639CrossRefGoogle Scholar
  4. Badino G (2005) Underground drainage systems and geothermal flux. Acta Carsol 34:277–316Google Scholar
  5. Bauer H, Exel T, Oberender P et al (2015) Die Gobholo-Höhle in Swasiland: Expedition in eine der längsten Granithöhlen der Welt. Die Höhlen 66:27–42Google Scholar
  6. Bögli A (1964) Mischungskorrosion – ein Beitrag zum Verkarstungsproblem. Erdkunde 18:83–92CrossRefGoogle Scholar
  7. Cigna AA (2002) Modern trend(s) in cave monitoring. Acta Carsol 31:35–54Google Scholar
  8. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, OxfordGoogle Scholar
  9. Curl RL (1958) A statistical theory of cave entrance evolution. Natl Speleol Soc Bull 20:9–21Google Scholar
  10. Curl RL (1960) Stochastic models of cavern development. Natl Speleol Soc Bull 22:66–76Google Scholar
  11. Curl RL (1986) Fractal dimensions and geometries of caves. Math Geol 18:765–783CrossRefGoogle Scholar
  12. Deike GH III (1960) Origin and geologic relations of Breathing Cave, Virginia. Natl Speleol Soc Bull 22:30–42Google Scholar
  13. Dreybrodt W, Gabrovsek F, Romanov D (2005) Processes of speleogenesis: a modelling approach. Karst research Institute at ZRC SAZU, ZRC Publishing, LubljanaGoogle Scholar
  14. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  15. Ford DC, Harmon RS, Schwarcz HP et al (1976) Geo-hydrologic and thermometric observations in the vicinity of the Columbia Icefield, Alberta and British Columbia, Canada. J Glaciol 16:219–230CrossRefGoogle Scholar
  16. Grimes KG (1999) The water below: an introduction to karst hydrology and the hydrological setting of the Australian karsts. In: Proceedings of the 13th Australasian Conference on Cave and Karst ManagementGoogle Scholar
  17. Halliday WR (2007) Pseudokarst in the 21st century. J Cave Karst Stud 69(1):103–113Google Scholar
  18. Hill C, Forti P (1997) Cave minerals of the World, 2nd edn. Huntsville, National Speleological SocietyGoogle Scholar
  19. Iepure S (2018) Ice cave fauna. In: Perşoiu A, Lauritzen SE (eds) Ice caves. Elsevier, Amsterdam, pp 163–171CrossRefGoogle Scholar
  20. Klimchouk A (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. National Cave and Karst Research Institute. Special Paper(No. 1):1–106Google Scholar
  21. Luetscher M, Jeannin PY (2004) A process-based classification of alpine ice caves. Theor Appl Karstol 17:5–10Google Scholar
  22. Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414CrossRefGoogle Scholar
  23. Palmer AN (2007) Cave geology. Cave Books, Dayton, OHGoogle Scholar
  24. Perşoiu A (2018) Ice caves climate. In: Perşoiu A, Lauritzen SE (eds) Ice caves. Elsevier, Amsterdam, pp 21–32CrossRefGoogle Scholar
  25. Poulson TL, White WB (1969) The cave environment. Science 165:971–981CrossRefGoogle Scholar
  26. Purcarea C (2018) Microbial life in ice caves. In: Perşoiu A, Lauritzen SE (eds) Ice caves. Elsevier, Amsterdam, pp 173–187CrossRefGoogle Scholar
  27. Sallstedt T, Ivarsson M, Lundberg J et al (2014) Speleothem and biofilm formation in a granite/dolerite cave, Northern Sweden. Int J Speleol 43:305–313CrossRefGoogle Scholar
  28. Sauro F, Piccini L, Mecchia M et al (2013) Comment on “Sandstone caves on Venezuelan tepuis: return to pseudokarst?” by Aubrecht R et al, Geomorphology 132:351–365. Geomorphology 197:190–196CrossRefGoogle Scholar
  29. Shahack-Gross R, Berna F, Karkanas P et al (2004) Bat guano and preservation of archaeological remains in cave sites. J Archaeol Sci 31:1259–1272CrossRefGoogle Scholar
  30. Sjöberg R (1986) Caves indicating neotectonic activity in Sweden. Geogr Ann A 68:393–398CrossRefGoogle Scholar
  31. Šušteršič F (1999) Vertical zonation of the speleogenetic space. Acta Carsol 28:187–201Google Scholar
  32. White WB (1977) Role of solution kinetics in the development of karst aquifers. Karst Hydrogeology. J. S. Tolson and F. L. Doyle, Int Assoc Hydrogeol, pp 503–517Google Scholar
  33. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  34. White WB (1997) Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in karst terrains. Environ Geol 30:46–58CrossRefGoogle Scholar
  35. White WB, Culver DC (2012) Cave, definition of. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 103–107CrossRefGoogle Scholar
  36. Wigley TML (1967) Non-steady flow through a porous medium and cave breathing. J Geophys Res 72:3199–3205CrossRefGoogle Scholar
  37. Wigley TML, Brown MC (1971) Geophysical applications of heat and mass transfer in turbulent pipe flow. Bound-Layer Meteorol 1:300–320CrossRefGoogle Scholar
  38. Wigley TML, Brown MC (1976) The physics of caves. In: Ford TD, Cullingford CHD (eds) The science of speleology. Academic, London, pp 329–358Google Scholar
  39. Williams PW (1985) Subcutaneous hydrology and the development of doline and cockpit karst. Z Geomorphol 29:463–482Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway

Personalised recommendations