Advertisement

Cave Ecology pp 399-414 | Cite as

Volcanic Anchialine Habitats of Lanzarote

  • Alejandro Martínez
  • Brett C. Gonzalez
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

The island of Lanzarote is situated in the northern end of the Canary Islands and hosts one of the most diverse volcanic anchialine ecosystems in the world. Best known for Túnel de la Atlántida, Lanzarote has a diverse set of anchialine habitats, including lakes, pools, and even wells that penetrate into the subterranean aquifer. The porous nature of this volcanic terrain interconnects the different anchialine water bodies, providing suitable habitat for over 40 stygobitic species. Amazingly, this geologically young island is home to many characteristic anchialine fauna, including remipedes, thermosbaenaceans, and thaumatocyprid ostracods that have puzzled zoologists and biogeographers throughout the twentieth century. Several stygobites with clear deep-sea affinities are also present, including the polynoid scale worm Gesiella jameensis and the galatheid squat lobster Munidopsis polymorpha, an iconic symbol to Lanzarote. While the known anchialine habitats of Lanzarote are relatively small in comparison to other regions, the unique combination of geology and faunal composition is providing exciting new insights into pathways of dispersal and colonization among anchialine environments. Ultimately, these discoveries will continue to push anchialine research forward, stimulating new ideas and testable hypothesis in order to better understand these remarkable environments.

Notes

Acknowledgements

This chapter is dedicated to the pioneering works of Thomas M. Iliffe, Pedro Oromí, Jorge Núñez, and Horst Wilkens for their support and friendship throughout our careers. Their countless discoveries and contributions continue to drive young scientists underground, pushing the boundaries of science and “evolution in the dark” as we know it. We are forever grateful to Katrine Worsaae for her willingness to open up her lab in order to make this research and numerous others a reality. Exploration and discovery is not without risks, and for this we are indebted to all the cave divers and support teams, for without their support, these investigations would never have been possible. Several scientific grants, including those from Denmark, Germany, Spain, and the USA, have supported our exploration and research over the years. We would also like to personally thank Elena Mateo, UNESCO Geopark of Lanzarote, and the Chinijo Archipelago, for their continued support in providing scientific access to these remarkable sites.

References

  1. Ahyong ST, Andreakis N, Taylor J (2011) Mitochondrial phylogeny of the deep-sea squat lobsters, Munidopsidae (Galatheoidea). Zool Anz-J Comp Zool 250:367–377CrossRefGoogle Scholar
  2. Boxshall GA, Jaume D (2000) Discoveries in cave misophroids (Crustacea: Copepoda) shed new light on the origin of anchialine fauna. Zool Anz 239:1–19Google Scholar
  3. Brankovits D, Pohlman JW, Niemann H et al (2017) Methane- and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat Commun 9:1835CrossRefGoogle Scholar
  4. Bravo T (1964) El volcán y el malpaís de la Corona, La Cueva de los Verdes y los Jámeos. Publicaciones del Cabildo Insular de LanzaroteGoogle Scholar
  5. Brito MDC, Martínez A, Núñez J (2009) Changes in the stygobiont polychaete community of the Jameos del Agua, Lanzarote, as a result of bioturbation by the echiurid Bonellia viridis. Mar Biodivers 39:183–188CrossRefGoogle Scholar
  6. Calman WT (1904) On Munidopsis polymorpha Koelbel, a cave dwelling marine crustacean from the Canary Islands. Ann Mag Natl Hist Sér 7(14):213–218CrossRefGoogle Scholar
  7. Carracedo JC, Singer B, Jicha B et al (2003) La erupción y el tubo volcánico del Volcán Corona (Lanzarote, Islas Canarias). Estud Geol 59:277–302CrossRefGoogle Scholar
  8. Danielopol D, Baltanás A, Bonaduce G (1996) The darkness syndrome in subsurface-shallow and deep-sea dwelling Ostracoda (Crustacea). In: Ublein F, Stachowitsch M (eds) Deep-sea and extreme shallow-water habitats: affinities and adaptations. Biosyst Ecol Ser 11:123–143Google Scholar
  9. Fage L, Monod T (1936) La faune marine du Jameo de Agua, lac sousterrain d l’ile de Lanzarote (Canaries). Arch Zool Exp Gén 78:97–113Google Scholar
  10. Fornari DJ, Ryan WB, Fox PJ (1985) Sea-floor lava fields on the East Pacific rise. Geology 13:413–416CrossRefGoogle Scholar
  11. García-Herrero A, Sánchez N, García-Gómez G et al (2017) Two new stygophilic tanaidomorphs (Peracarida, Tanaidacea) from Canary Islands and southeastern Iberian Peninsula. Mar Biodivers. https://doi.org/10.1007/s12526-017-0763-7
  12. García-Valdecasas A (1985) Estudio faunístico de la cueva submarina “Túnel de la Atlántida”, Jameos del Agua, Lanzarote. Nat Hisp 27:1–56Google Scholar
  13. Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer, BerlinGoogle Scholar
  14. Gobert S, Reygel P, Artois T (2017) Schizorhynchia (Platyhelminthes Rhabdocoela) of Lanzarote (Canary Islands), with the description of eight new species. Mar Biodivers. https://doi.org/10.1007/s12526-017-0736-x
  15. Gonzalez BC, Martínez A, Borda E et al (2017) Genetic spatial structure of an anchialine cave annelid indicates connectivity within – but not between – islands of the Great Bahama Bank. Mol Phyl Evol 109:259–270CrossRefGoogle Scholar
  16. Gonzalez BC, Worsaae K, Fontaneto D et al (2018) Anophthalmia and elongation of body appendages in cave scale worms (Aphroditiformia, Annelida). Zool Scr 45:106–121CrossRefGoogle Scholar
  17. Harms VW (1921) Das rudimentäre Sehorgan eines Höhlendecapoden Munidopsis polymorpha Koelbel aus der Cueva de los Verdes auf der Insel Lanzarote. Zool Anz 52:101–115Google Scholar
  18. Hart CWJ, Manning RB, Iliffe TM (1985) The fauna of Atlantic marine caves: evidence of dispersal by sea floor spreading while maintaining ties to deep water. Proc Biol Soc Wash 98:288–292Google Scholar
  19. Iliffe TM, Bishop RE (2007) Adaptations to life in marine caves. In: Safran P (ed) Fisheries and aquaculture, encyclopedia of life support systems. UNESCO/Eolss, OxfordGoogle Scholar
  20. Iliffe TM, Kornicker L (2009) Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. In: Lang MA, Macintyre IG, Rützler K (eds), Proceedings of biological society of Washington. Smithsonian Institution Scholary Press, pp 269–280Google Scholar
  21. Iliffe TM, Wilkens H, Parzefall J et al (1984) Marine lava cave fauna: composition, biogeography and origins. Science 225:309–311CrossRefGoogle Scholar
  22. Iliffe TM, Parzefall J, Wilkens H (2000) Ecology and species distribution of the Monte Corona lava tunnel on Lanzarote (Canary Islands). In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world. Elsevier, AmsterdamGoogle Scholar
  23. Jantschke H, Nohlen C, Schafheutle M (1994) Tunel de la Atlantida, Haria. Lanzarote. The hydrodynamic, the chemistry and the minerals of the lava tube. The population density of Munidopsis polymorpha. GHS ExpeditionGoogle Scholar
  24. Jaume D, Cartes JE, Boxshall GA (2000) Shallow-water and not deep-sea as most plausible origin for cavedwelling Paramisophria species (Copepoda: Calanoida: Arietellidae), with description of three new species from Mediterranean bathyal hyperbenthos and littoral caves. Contrib Zool 68:206–204Google Scholar
  25. Jurado-Rivera JA, Pons J, Alvarez F, Botello A, Humphreys WF, Page TM, Iliffe TM, Willassen E, Meland K, Juan C, Jaume D (2017) Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci Rep 7:2852CrossRefGoogle Scholar
  26. Koelbel K (1892) Beiträge zur Kenntnis der Crustaceen der Canarischen Inseln. Ann K-Kg Naturhist Hofmuseums Wien 7:105–116Google Scholar
  27. Martínez A, Palmero AM, Brito MC et al (2009) Anchialine fauna of the Corona lava tube (Lanzarote, Canary Islands): diversity, endemism and distribution. Mar Biodivers 39:169–187CrossRefGoogle Scholar
  28. Martínez A, Di Domenico M, Worsaae K (2013) Evolution of cave Axiokebuita and Speleobregma (Scalibregmatidae, Annelida). Zool Scr 42:623–636Google Scholar
  29. Martínez A, Di Domenico M, Worsaae K (2014) Gain of palps within a lineage of ancestrally burrowing annelids (Scalibregmatidae). Acta Zool-Stockholm 95:421–429CrossRefGoogle Scholar
  30. Martínez A, Di Domenico M, Rouse G et al (2015) Phylogeny of Protodrilidae (Annelida) inferred by total evidence analyses. Cladistics 31:250–276CrossRefGoogle Scholar
  31. Martínez A, Gonzalez BC, Worsaae K et al (2016a) Guide to the anchialine ecosystems of Jameos del Agua and Túnel de la Atlántida. Medio Ambiente, Cabildo de Lanzarote, Arrecife, LanzaroteGoogle Scholar
  32. Martínez A, Kvindebjerg K, Iliffe TM et al (2016b) Evolution of cave suspension feeding in Protodrilidae (Annelida). Zool Scr 46:214–226CrossRefGoogle Scholar
  33. Núñez J, Ocaña O, Brito MC (1997) Two new species (Polychaeta: Fauveliopsidae and Nerillidae) and other polychaetes from the marine lagoon cave of Jameos del Agua, Lanzarote (Canary Islands). Bull Mar Sci 60:252–260Google Scholar
  34. Núñez J, Martínez A, Brito MC (2009) A new species of Sphaerosyllis Claparède, 1863 (Polychaeta: Syllidae: Exogoninae) from the Atlantida Tunnel, Lanzarote, Canary Islands. Mar Biodivers 39:209–214CrossRefGoogle Scholar
  35. Page TJ, Hughes JM, Real KM et al (2016) Allegory of a cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales. Mar Biodivers. https://doi.org/10.1007/s12526-016-0565-3CrossRefGoogle Scholar
  36. Parzefall J, Wilkens H (1975) Zur Ethologie augenreduzierter Tiere. Untersuchungen an Munidopsis polymorpha Koelbel (Anomura, Galatheidae). Ann Spéléol 30:325–335Google Scholar
  37. Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol-Progr Ser 155:17–27CrossRefGoogle Scholar
  38. Stock JH (1993) Some remarkable distribution patterns in stygobiont Amphipoda. J Nat Hist 27:807–819CrossRefGoogle Scholar
  39. Wilkens H, Parzefall J, Iliffe TM (1986) Origin and age of the marine stygofauna of Lanzarote, Canary Islands. Mitt Hamb Zool Mus Inst 83:223–230Google Scholar
  40. Wilkens H, Parzefall J, Ribowski A (1990) Population Biology and Larvae of the Anchialine Crab Munidopsis polymorpha (Galatheidae) from Lanzarote (Canary Islands). J Crustac Biol 10:667–675CrossRefGoogle Scholar
  41. Wilkens H, Ocaña Ó, Medina AL (1993) La fauna de unos biotopos anquialinos en Lanzarote. (I. Canarias). Mem Biospéleol 20:283–285Google Scholar
  42. Wilkens H, Iliffe TM, Oromí P et al (2009) The Corona lava tube, Lanzarote: geology, habitat diversity and biogeography. Mar Biodivers 39:155–167CrossRefGoogle Scholar
  43. Worsaae K (2014) Nerillidae Levinsen, 1883. Handbook of Zoology Online. Walter de GruyterGoogle Scholar
  44. Worsaae K, Martínez A, Núñez J (2009) Nerillidae (Annelida) from the Corona lava tube, Lanzarote with description of Meganerilla cesari n. sp. Mar Biodivers 39:195–207CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro Martínez
    • 1
  • Brett C. Gonzalez
    • 2
  1. 1.Institute of Ecosystems Studies, National Research Council of ItalyVerbaniaItaly
  2. 2.Marine Biological Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations