Cave Ecology pp 269-295 | Cite as

Structure and Genetics of Cave Populations

  • Peter TronteljEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


Cave populations have been traditionally perceived as genetically strongly structured and less diverse than related surface populations because of the patchiness of subterranean habitats, low dispersal of cave species, and genetic bottlenecks at colonization. These patterns are at odds with relatively large and/or disjunct ranges of many troglobionts, as well as the countless successful cave colonizations. One way to disentangle those discrepancies is to discriminate between exogenous processes that take place at the surface or during invasion, and endogenous ones that take place in and are governed by the specific conditions of caves. Genetic evidence collected over the past decades suggests that ongoing endogenous processes, endogenous vicariance, and gene flow between allopatric cave populations have less effect on the genetic structure of cave populations than patterns inherited from past exogenous events. Conversely, most known cases of recent migration between non-neighboring cave populations entail the possibility of dispersal via the surface. Gene pools of young cave populations often show strong exogenous imprints such as multiple colonization events and/or recurring gene flow from the surface. This is compatible with the high propagule pressure hypothesis of successful biological invasions, while convincing molecular evidence for the genetic bottleneck hypothesis of cave colonization is sparse.



The ideas presented in this chapter have grown through intriguing discussions with David Culver, Cene Fišer, Slavko Polak and numerous other colleagues, students and friends. They are based on research supported by and conducted under the Slovenian Research Agency Program P1–0184 and associated projects.


  1. Allegrucci G, Sbordoni V, Cesaroni D (2015) Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets? PLoS One 10:e0122456CrossRefGoogle Scholar
  2. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, MaldenGoogle Scholar
  3. Asmyhr MG, Hose G, Graham P et al (2014) Fine-scale genetics of subterranean syncarids. Freshw Biol 59:1–11CrossRefGoogle Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Avise JC, Selander RK (1972) Genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26:1–19CrossRefGoogle Scholar
  6. Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102Google Scholar
  7. Boutin C, Coineau N (2000) Evolutionary rates and phylogenetic age in some stygobiont species. In: Wilkens H, Culver DC, Humphreys W (eds) Ecosystems of the world: subterranean ecosystems. Elsevier, Amsterdam, pp 433–451Google Scholar
  8. Bradford TM, Adams M, Guzik MT et al (2013) Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111:77–85CrossRefGoogle Scholar
  9. Bradic M, Beerli P, García-de León FJ et al (2012) Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 12:9CrossRefGoogle Scholar
  10. Bressi N, Aljancic M, Lapini L (1999) Notes on presence and feeding of Proteus anguinus Laurenti, 1768 outside caves. Riv Idrobiol 38:431–435Google Scholar
  11. Buhay JE, Crandall KA (2005) Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Mol Ecol 14:4259–4273CrossRefGoogle Scholar
  12. Caccone A, Sbordoni V (2001) Molecular biogeography of cave life: a study using mitochondrial DNA from bathysciine beetles. Evolution 55:122–130CrossRefGoogle Scholar
  13. Carlini DB, Manning J, Sullivan PG et al (2009) Molecular genetic variation and population structure in morphologically differentiated cave and surface populations of the freshwater amphipod Gammarus minus. Mol Ecol 18:1932–1945CrossRefGoogle Scholar
  14. Christiansen KA (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537CrossRefGoogle Scholar
  15. Coghill LM, Darrin Hulsey C, Chaves-Campos J et al (2014) Next generation phylogeography of cave and surface Astyanax mexicanus. Mol Phylogenet Evol 79:368–374CrossRefGoogle Scholar
  16. Cooper SJ, Bradbury JH, Saint KM et al (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Mol Ecol 16:1533–1544CrossRefGoogle Scholar
  17. Crouau-Roy B (1989) Population studies on an endemic troglobitic beetle: geographical patterns of genetic variation, gene flow and genetic structure compared with morphometric data. Genetics 121:571–582PubMedPubMedCentralGoogle Scholar
  18. Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, CambridgeCrossRefGoogle Scholar
  19. Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, New YorkCrossRefGoogle Scholar
  20. Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves: the evolution of Gammarus minus. Harvard University Press, LondonCrossRefGoogle Scholar
  21. Culver DC, Pipan T, Schneider K (2009) Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions. Freshw Biol 54:918–929CrossRefGoogle Scholar
  22. De Aguiar MA, Baranger M, Baptestini EM et al (2009) Global patterns of speciation and diversity. Nature 460:384–387CrossRefGoogle Scholar
  23. Desutter-Grandcolas L (1997) Studies in cave life evolution: a rationale for future theoretical developments using phylogenetic inference. J Zoolog Syst Evol Res 35:23–31CrossRefGoogle Scholar
  24. Eme D, Malard F, Konecny-Dupre L et al (2013) Bayesian phylogeographic inferences reveal contrasting colonization dynamics among European groundwater isopods. Mol Ecol 22:5685–5699CrossRefGoogle Scholar
  25. Esposito LA, Bloom T, Caicedo-Quiroga L et al (2015) Islands within islands: diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Mol Phylogenet Evol 93:107–117CrossRefGoogle Scholar
  26. Faille A, Bourdeau C, Belles X et al (2015) Allopatric speciation illustrated: the hypogean genus Geotrechus Jeannel, 1919 (Coleoptera: Carabidae: Trechini), with description of four new species from the Eastern Pyrenees (Spain). Arthropod Syst Phylogeny 73:439–455Google Scholar
  27. Graening GO, Slay ME, Brown AV et al (2006) Status and distribution of the endangered Benton Cave crayfish, Cambarus aculabrum (Decapoda: Cambaridae). Southwest Nat 51:376–381CrossRefGoogle Scholar
  28. Guzik MT, Cooper SJB, Humphreys WF et al (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 18:3683–3698CrossRefGoogle Scholar
  29. Guzik MT, Cooper SJB, Humphreys WF et al (2011) Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert. Heredity 107:215–230CrossRefGoogle Scholar
  30. Hernández D, Casane D, Chevalier-Monteagudo P et al (2016) Go west: a one way stepping-stone dispersion model for the cavefish Lucifuga dentata in western Cuba. PLoS One 11:e0153545CrossRefGoogle Scholar
  31. Hoelzer GA, Drewes R, Meier J et al (2008) Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences. PLoS Comput Biol 4:e1000126CrossRefGoogle Scholar
  32. Holsinger JR (2000) Ecological derivation, colonisation and speciation. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier, Amsterdam, pp 399–416Google Scholar
  33. Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a ground-water fauna perspective. Invertebr Syst 22:85–101CrossRefGoogle Scholar
  34. Kane TC (1982) Genetic patterns and population structure in cave animals. In: Mossakowski D, Roth G (eds) Environmental adaptation and evolution. Gustav Fisher, Stuttgart, pp 131–149Google Scholar
  35. Kane TC, Barr TC, Badaracca WJ (1992) Cave beetle genetics: geology and gene flow. Heredity 68:277–286CrossRefGoogle Scholar
  36. Ketmaier V, Argano R, Caccone A (2003) Phylogeography and molecular rates of subterranean aquatic Stenasellid isopods with a peri-Tyrrhenian distribution. Mol Ecol 12:547–555CrossRefGoogle Scholar
  37. Konec M, Prevorčnik S, Sarbu SM et al (2015) Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea). J Evol Biol 28:864–875CrossRefGoogle Scholar
  38. Konec M, Delić T, Trontelj P (2016) DNA barcoding sheds light on hidden subterranean boundary between Adriatic and Danubian drainage basins. Ecohydrology 9:1304–1312CrossRefGoogle Scholar
  39. Laing C, Carmody GR, Peck SB (1976) Population genetics and evolutionary biology of the cave beetle Ptomaphagus hirtus. Evolution 30:484–498CrossRefGoogle Scholar
  40. Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806CrossRefGoogle Scholar
  41. Lefébure T, Douady CJ, Malard F et al (2007) Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol Phylogenet Evol 42:676–686CrossRefGoogle Scholar
  42. Leys R, Watts CHS, Cooper SJB et al (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834PubMedGoogle Scholar
  43. Meleg IN, Zakšek V, Fišer C et al (2013) Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS One 8:e76760CrossRefGoogle Scholar
  44. Milanović P (2015) Karst of eastern Herzegovina, the Dubrovnik littoral and western Montenegro. Environ Earth Sci 74:15–35CrossRefGoogle Scholar
  45. Morrison DA (2014) The monkey’s voyage: how improbable journeys shaped the history of life.—By Alan de Queiroz. Syst Biol 63:847–849CrossRefGoogle Scholar
  46. Notenboom J (1991) Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea). J Biogeogr 18:437–454CrossRefGoogle Scholar
  47. Ortuño VM, Gilgado JD, Jiménez-Valverde A et al (2013) The “alluvial mesovoid shallow substratum”, a new subterranean habitat. PLoS One 8:e76311CrossRefGoogle Scholar
  48. Panaram K, Borowsky R (2005) Gene flow and genetic variability in cave and surface populations of the Mexican tetra, Astyanax mexicanus (Teleostei: Characidae). Copeia 2005:409–416CrossRefGoogle Scholar
  49. Pante E, Puillandre N, Viricel A et al (2015) Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol Ecol 24:525–544CrossRefGoogle Scholar
  50. Plath M, Hauswaldt JS, Moll K et al (2007) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Mol Ecol 16:967–976CrossRefGoogle Scholar
  51. Polak S, Delić T, Kostanjšek R et al (2016) Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro. Arthropod Syst Phylogeny 74:241–254Google Scholar
  52. Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290CrossRefGoogle Scholar
  53. Poulson TL, White WB (1969) The cave environment. Science 165:971–981CrossRefGoogle Scholar
  54. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  55. Rivera MAJ, Howarth FG, Taiti S et al (2002) Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Mol Phylogenet Evol 25:1–9CrossRefGoogle Scholar
  56. Rizzo V, Comas J, Fadrique F et al (2013) Early Pliocene range expansion of a clade of subterranean Pyrenean beetles. J Biogeogr 40:1861–1873Google Scholar
  57. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464CrossRefGoogle Scholar
  58. Sbordoni V, Caccone A, De Matthaeis E et al (1980) Biochemical divergence between cavernicolous and marine Sphaeromidae and the Mediterranean salinity crisis. Cell Mol Life Sci 36:48–50CrossRefGoogle Scholar
  59. Sbordoni V, Allegrucci G, Cesaroni D (2000) Population genetic structure, speciation and evolutionary rates in cave-dwelling organisms. In: Wilkens H, Culver DC, Humphreys W (eds) Ecosystems of the world: subterranean ecosystems. Elsevier, Amsterdam, pp 453–477Google Scholar
  60. Schilthuizen M, Rutten EMJ, Haase M (2012) Small-scale genetic structuring in a tropical cave snail and admixture with its above-ground sister species. Biol J Linn Soc 105:727–740CrossRefGoogle Scholar
  61. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  62. Skrbinšek T, Jelenčič M, Waits L et al (2012) Monitoring the effective population size of a brown bear (Ursus arctos) population using new single-sample approaches. Mol Ecol 21:862–875CrossRefGoogle Scholar
  63. Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 62:62–70CrossRefGoogle Scholar
  64. Swofford DL, Branson BA, Sievert G (1980) Genetic differentiation in cavefish populations (Amblyopsidae). Isozyme Bull 13:109–110Google Scholar
  65. Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  66. Turanchik EJ, Kane TC (1979) Ecological genetics of the cave beetle Neaphaenops tellkampfii (Coleoptera: Carabidae). Oecologia 44:63–67CrossRefGoogle Scholar
  67. Verovnik R, Sket B, Prevorcnik S et al (2003) Random amplified polymorphic DNA diversity among surface and subterranean populations of Asellus aquaticus (Crustacea: Isopoda). Genetica 119:155–165CrossRefGoogle Scholar
  68. Verovnik R, Sket B, Trontelj P (2004) Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda). Mol Ecol 13:1519–1532CrossRefGoogle Scholar
  69. Villacorta C, Jaume D, Oromí P et al (2008) Under the volcano: phylogeography and evolution of the cave-dwelling Palmorchestia hypogaea (Amphipoda, Crustacea) at La Palma (Canary Islands). BMC Biol 6:7CrossRefGoogle Scholar
  70. Ward JV, Palmer MA (1994) Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287:147–156CrossRefGoogle Scholar
  71. Wessel A, Hoch H, Asche M et al (2013) Founder effects initiated rapid species radiation in Hawaiian cave planthoppers. Proc Natl Acad Sci USA 110:9391–9396CrossRefGoogle Scholar
  72. Zakšek V, Sket B, Trontelj P (2007) Phylogeny of the cave shrimp Troglocaris: evidence of a young connection between Balkans and Caucasus. Mol Phylogenet Evol 42:223–235CrossRefGoogle Scholar
  73. Zakšek V, Sket B, Gottstein S et al (2009) The limits of cryptic diversity in groundwater: phylogeography of the cave shrimp Troglocaris anophthalmus (Crustacea: Decapoda: Atyidae). Mol Ecol 18:931–946CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations