Advertisement

Cave Ecology pp 229-252 | Cite as

Historical and Ecological Factors Determining Cave Diversity

  • Ignacio RiberaEmail author
  • Alexandra Cieslak
  • Arnaud Faille
  • Javier Fresneda
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

Species living in the deep subterranean environment tend to share similar morphological characters evolved independently from epigean ancestors, the troglomorphic phenotype. They also tend to have very restricted distributions, as a consequence of their limited dispersal capabilities. Until recent years, the predominant view on the evolution of the subterranean fauna was that troglomorphic species were strictly confined to the deep subterranean environment, with the implication that species not in close geographic vicinity must have independently developed their troglomorphic characters in a sort of concerted evolution close to the traditional concept of orthogenesis. Recent developments on the knowledge of the ecology and the phylogenetic history of several groups with abundance of subterranean species are changing this view. First, there is increasing evidence that epigean and deep subterranean environments form a continuum without clear limits and that troglomorphic species can occupy different parts of this continuum at different times depending on their particular conditions. And second, the availability of molecular phylogenies has led to the discovery of monophyletic lineages of troglomorphic species only, suggesting the single origin of the subterranean colonisation and of the troglomorphic characters, with subsequent dispersal and diversification of already subterranean species.

Notes

Acknowledgements

We thank our friends and colleagues Carmelo Andújar, Charles Bourdeau, Achille Casale, Jordi Comas, Carles Hernando, Valeria Rizzo and Enrique Valenzuela for their collaboration and ideas on the origin and evolution of the subterranean fauna, and Achille Casale for his comments to previous versions of the work. The SEM photographs of Fig. 10.6 were taken in the Phyletisches Museum (Jena) with the support of Rolf G. Beutel and Hans Pohl.

References

  1. Alcover JA, Mayol J (1980) Noticia del hallazgo de Baleaphryne (Amphibia: Anura: Discoglossidae) viviente en Mallorca. Doñana Acta Vertebrata 7:266–269Google Scholar
  2. Andersen T, Baranov V, Hagenlund LK et al (2016) Blind flight? A New troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama-Trojama Cave in Croatia. PLoS One 11:e0152884PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andújar C, Faille A, Pérez-González S et al (2016) Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles. Mol Phylogenet Evol 99:235–246PubMedCrossRefGoogle Scholar
  4. Arnedo MA, Oromi P, Múrria C et al (2007) The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae: Dysderidae) in the Canary Islands. Invertebr Syst 21:623–660CrossRefGoogle Scholar
  5. Assmann T, Casale A, Drees C et al (2010) The dark side of relict species biology: cave animals as ancient lineages. In: Habel JC, Assmann T (eds) Relict species. Phylogeography and conservation biology. Springer, Berlin, pp 91–103Google Scholar
  6. Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–105Google Scholar
  7. Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337CrossRefGoogle Scholar
  8. Bauzà-Ribot MM, Juan C, Nardi F et al (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Curr Biol 22:2069–2074PubMedCrossRefGoogle Scholar
  9. Bellés X (1987) Fauna cavernícola i intersticial de la Península Ibérica i les Illes Balears. Editorial Moll-CSIC, Palma de MallorcaGoogle Scholar
  10. Bilandzija H, Cetkovic H, Jeffery WR (2012) Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis. Evol Dev 14:196–203PubMedPubMedCentralCrossRefGoogle Scholar
  11. Botello A, Iliffe TM, Alvarez F et al (2012) Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J Biogeogr 40:594–607CrossRefGoogle Scholar
  12. Bowler PJ (1983) The eclipse of Darwinism. The John Hopkins University Press, BaltimoreGoogle Scholar
  13. Cabidoche M (1966) Contribution à la connaissance de l’écologie des Trechinae cavernicoles pyrénéens. PhD Dissertation, ParisGoogle Scholar
  14. Casale A (2004) Due nuovi Coleotteri ipogei di Sardegna, Sardaphaenops adelphus n. sp. (Coleoptera Carabidae) e Patriziella muceddai n. sp. (Coleoptera Cholevidae), e loro significato biogeografico. Boll Soc Entomol Ital 136:3–31Google Scholar
  15. Christiansen K (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:76–78Google Scholar
  16. Christiansen K (2012) Morphological adaptations. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Amsterdam, pp 517–528CrossRefGoogle Scholar
  17. Cieslak A, Fresneda J, Ribera I (2014) Life history evolution and diversification in Leptodirini cave beetles. Proc R Soc Lond B 281:20132978CrossRefGoogle Scholar
  18. Collin R, Miglietta M (2008) Reversing opinions on Dollo’s law. Trends Ecol Evol 23:602–609PubMedCrossRefGoogle Scholar
  19. Crouau-Roy B (1989) Population studies on an endemic troglobitic beetle: geographical patterns of genetic variation, gene flow and genetic structure compared with morphometric data. Genetics 121:571–582PubMedPubMedCentralGoogle Scholar
  20. Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  21. Culver DC, Pipan T (2015) Shifting paradigms of the evolution of cave life. Acta Carsol 44:415–425Google Scholar
  22. Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. The evolution of Gammarus minus. Harvard University Press, BostonCrossRefGoogle Scholar
  23. Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15:223–224PubMedCrossRefGoogle Scholar
  24. Darwin C (1859) On the origin of species by means of natural selection. Murray, LondonGoogle Scholar
  25. de Peyerimhoff P (1906) Considérations sur les origines de la faune souterraine. Ann Soc Ent France 223–233Google Scholar
  26. Delay B (1975) Étude quantitative de populations monospécifiques de coléoptères hypogés par la méthode des marquages et recaptures. Ann Spéléol 30:195–206Google Scholar
  27. Delay B (1978) Milieu souterrain et écophysiologie de la reproduction et du développement des Coléoptères Bathysciinae hypogés. Mém Biospéol 5:1–349Google Scholar
  28. Deleurance S (1963) Recherches sur les Coléoptères troglobies de la sous-famille Bathysciinae. Annu Sci Nat Zool Paris Ser 12:1–172Google Scholar
  29. Dubois R (1892) Quelques faits relatifs à l’action de la lumière sur les Protées des grottes de la Carniole. Ann Soc Linn Lyon 39:53–56CrossRefGoogle Scholar
  30. Esmaeili-Rineh S, Sari A, Delić T et al (2015) Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool J Linn Soc 175:812–826CrossRefGoogle Scholar
  31. Faille A, Pluot-Sigwalt D (2015) Convergent evolution in the reduction of ovariole number associated with subterranean life in cave beetles. PLoS One 10:e0131986PubMedPubMedCentralCrossRefGoogle Scholar
  32. Faille A, Ribera I, Deharveng L et al (2010) A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae). Mol Phylogenet Evol 54:97–106PubMedCrossRefGoogle Scholar
  33. Faille A, Casale A, Ribera I (2011) Phylogenetic relationships of Western Mediterranean subterranean Trechini groundbeetles (Coleoptera: Carabidae). Zool Scr 40:282–295CrossRefGoogle Scholar
  34. Faille A, Bourdeau C, Fresneda J (2012) Molecular phylogeny of the Trechus brucki group, with description of two new species from the Pyreneo-Cantabrian area (France, Spain) (Coleoptera, Carabidae, Trechinae). ZooKeys 217:11–51CrossRefGoogle Scholar
  35. Faille A, Casale A, Balke M et al (2013) A molecular phylogeny of Alpine subterranean Trechini (Coleoptera: Carabidae). BMC Evol Biol 13:248PubMedPubMedCentralCrossRefGoogle Scholar
  36. Faille A, Andújar C, Fadrique F et al (2014) Late Miocene origin of an Ibero-Maghrebian clade of ground beetles with multiple colonisations of the subterranean environment. J Biogeogr 41:1979–1990CrossRefGoogle Scholar
  37. Faille A, Tänzler R, Toussaint EFA (2015) On the way to speciation: shedding light on the karstic phylogeography of the micro-endemic cave beetle Aphaenops cerberus in the Pyrenees. J Hered 106:692–699PubMedGoogle Scholar
  38. Fejér A, Moldovan OT (2013) Population size and dispersal patterns for a Drimeotus (Coleoptera, Leiodidae, Leptodirini) cave population. Subterr Biol 11:31–44CrossRefGoogle Scholar
  39. Fišer C, Sket B, Trontelj P (2008) A phylogenetic perspective on 160 years of trouble taxonomy of Niphargus (Crustacea: Amphipoda). Zool Scr 37:665–680CrossRefGoogle Scholar
  40. Fresneda J, Salgado JM (2016) Catálogo de los Coleópteros Leiodidae Cholevinae Kirby, 1837 de la Península Ibérica e Islas Baleares. Barcelona, Spain, Monografies del Museu de Ciències Naturals de Barcelona 7Google Scholar
  41. Fresneda J, Hernando C, Lagar A et al (1997) Sistemática y geonemia de un coleóptero subterráneo de España: Oscadytes rovirai Lagar, 1975 (Coleoptera, Pterostichidae). Ann Soc Entomol Fr (NS) 33:205–213Google Scholar
  42. Fresneda J, Salgado JM, Ribera I (2007) Phylogeny of Western Mediterranean Leptodirini, with an emphasis on genital characters (Coleoptera: Leiodidae: Cholevinae). Syst Entomol 32:332–358CrossRefGoogle Scholar
  43. Fresneda J, Grebennikov VV, Ribera I (2011) The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp.n. from the Russian Far East. Arthropod Syst Phylo 69:99–123Google Scholar
  44. Fresneda J, Bourdeau C, Faille A (2015) Una nueva especie troglobiomorfa de Trechus Clairville, 1806 y evidencias de colonizaciones múltiples del medio subterráneo de los montes cantábricos (Coleoptera, Carabidae, Trechinae). Anim Biodiv Conserv 38:87–100Google Scholar
  45. Giachino PM, Vailati D (2010) The Subterranean environment. Hypogean life, concepts and collecting techniques. Verona, Italy, WBA Handbooks 3Google Scholar
  46. Goldberg EE, Igic B (2008) On phylogenetic tests of irreversible evolution. Evolution 62:2727–2741PubMedCrossRefGoogle Scholar
  47. Gómez-Mestre I, Jovani R (2013) A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proc R Soc B 280:20131869PubMedCrossRefGoogle Scholar
  48. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333CrossRefGoogle Scholar
  49. Hernando C, Ribera I, Vogler AP (1999) Alpine and cave or endogean habitats as postglacial refugia: examples from Palearctic ground beetles, with comments on their possible origins (Coleoptera: Carabidae). Coleopt Bull 53:31–39Google Scholar
  50. Ho SYW, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 23:5497–5965CrossRefGoogle Scholar
  51. Howarth FG (1972) Cavernicoles in lava tubes on the Island of Hawaii. Science 175:325–326PubMedCrossRefGoogle Scholar
  52. Jeannel R (1911) Révision des Bathysciinae (Coléoptères Silphides). Morphologie, Distribution géographique, Systématique. Arch Zool Exp Gén 47:1–641Google Scholar
  53. Jeannel R (1919) Diagnoses préliminaires de Trechinae [Col. Carabidae] cavernicoles nouveaux de France. Bull Soc Entomol Fr 253–255Google Scholar
  54. Jeannel R (1920) Étude sur le Trechus fulvus Dej. [Col. Carab.], sa phylogénie, son intérêt biogéographique. Serie Zoológica 41. Museo Nacional de Ciencias Naturales, Madrid, SpainGoogle Scholar
  55. Jeannel R (1926) Faune cavernicole de la France avec une étude des conditions d’existence dans le domaine souterrain. Lechevalier, ParisGoogle Scholar
  56. Jeannel R (1928) Monographie des Trechinae. Morphologie comparée et distribution d’un groupe de Coléoptères. Troisième Livraison: les Trechini cavernicoles L’Abeille 35:1–808Google Scholar
  57. Jeannel R (1942) La genèse des faunes terrestres, éléments de biogéographie. Presses Universitaires de France, ParisGoogle Scholar
  58. Jeannel R (1943) Les fossiles vivants des cavernes. Gallimard, ParisGoogle Scholar
  59. Jeannel R (1950) La marche de l’évolution. Presses Universitaires de France, ParisGoogle Scholar
  60. Jeannel R (1959) Situation géographique et peuplement des cavernes. Ann Spéléol 14:333–338Google Scholar
  61. Jeffery WR (2008) Emerging model systems in evo-devo: cavefish and microevolution of development. Evol Dev 10:265–272PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jeffery WR (2009) Regressive evolution in Astyanax cavefish. Annu Rev Genet 49:25–47CrossRefGoogle Scholar
  63. Jiménez-Moreno G, Fauquette S, Suc JP (2010) Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev Palaeob Palynol 162:403–415CrossRefGoogle Scholar
  64. Juberthie C, Decu V (eds) (1998) Encyclopaedia biospeleologica, Tome II. Société de Biospéologie, MoulisGoogle Scholar
  65. Juberthie C, Delay B, Bouillon M (1980) Sur l’existence d’un milieu souterrain superficiel en zone non calcaire. CR Acad Sci III-Vie 290:49–52Google Scholar
  66. Kowalko JE, Rohner N, Linden TA et al (2013) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci USA 110:16933–16938PubMedCrossRefGoogle Scholar
  67. Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6:654–662PubMedCrossRefGoogle Scholar
  68. Lamarck JB (1809) Philosophie zoologique. ParisGoogle Scholar
  69. Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806CrossRefGoogle Scholar
  70. Leijs R, van Nes EH, Watts CH et al (2012) Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLoS One 7:e34260PubMedPubMedCentralCrossRefGoogle Scholar
  71. López-Ródriguez JM, Tierno de Figueroa JM (2012) Life in the dark: on the biology of the cavernicolous stonefly Protonemura gevi (Insecta, Plecoptera). Am Nat 180:684–691PubMedCrossRefGoogle Scholar
  72. Mammola S, Isaia M, Arnedo MA (2015) Alpine endemic spiders shed light on the origin and evolution of subterranean species. PeerJ 3:e1384PubMedPubMedCentralCrossRefGoogle Scholar
  73. Marmonier P, Vervier P, Gibert J et al (1993) Biodiversity in ground waters. Trends Ecol Evol 8:392–395PubMedCrossRefGoogle Scholar
  74. Mazza G, Reboleira ASPS, Gonçalves F et al (2014) A new threat to groundwater ecosystems: first occurrences of the invasive crayfish Procambarus clarkii (Girard, 1852) in European caves. J Cave Karst Stud 76:62–65CrossRefGoogle Scholar
  75. Meleg IN, Zakšek V, Fišer C et al (2013) Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS One 8:e76760PubMedPubMedCentralCrossRefGoogle Scholar
  76. Morgan TH (1919) A critique of the theory of evolution. Princeton University Press, PrincetonGoogle Scholar
  77. Niven JE (2008) Evolution: convergent eye losses in fishy circumstances. Curr Biol 18:R27–R29PubMedCrossRefGoogle Scholar
  78. Ortuño VM, Gilgado JD, Jiménez-Valverde A et al (2013) The “Alluvial Mesovoid Shallow Substratum”, a new subterranean habitat. PLoS One 8:e76311PubMedPubMedCentralCrossRefGoogle Scholar
  79. Packard AS (1888) The cave fauna of North America, with remarks on the anatomy of the brain and origin of the blind species. Mem Natl Acad Sci 4:1–156Google Scholar
  80. Peck SB, Finston TL (1993) Galápagos Islands troglobites: the questions of tropical troglobites, parapatric distributions with eyed-sister-species, and their origin by parapatric speciation. Mém Biospéol 20:19–37Google Scholar
  81. Pipan T, Culver DC (2012) Convergence and divergence in the subterranean realm: a reassessment. Biol J Linn Soc 107:1–14CrossRefGoogle Scholar
  82. Porter ML, Crandall KA (2003) Lost along the way: the significance of evolution in reverse. Trends Ecol Evol 18:541–547CrossRefGoogle Scholar
  83. Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290CrossRefGoogle Scholar
  84. Protas ME, Jeffery WR (2012) Evolution and development in cave animals: from fish to crustaceans. WIREs Dev Biol 1:823–845CrossRefGoogle Scholar
  85. Protas ME, Hersey C, Kochanek D et al (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111PubMedCrossRefGoogle Scholar
  86. Rabosky DL (2015) Challenges in the estimation of extinction from molecular phylogenies: a response to Beaulieu and O’Meara. Evolution 70:218–228PubMedCrossRefGoogle Scholar
  87. Rabosky DL, Huang H (2016) A robust semi-parametric test for detecting trait-dependent diversification. Syst Biol 65:181–193PubMedCrossRefGoogle Scholar
  88. Racovitza EG (1907) Essai sur les problèmes biospéologiques. Arch Zool Exp Gén VI:371–488Google Scholar
  89. Ribera I (2008) Habitat constraints and the generation of diversity in freshwater macroinvertebrates. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CAB International, Wallingford, pp 289–311CrossRefGoogle Scholar
  90. Ribera I, Faille A (2010) A new microphthalmic stygobitic Graptodytes Seidlitz from Morocco, with a molecular phylogeny of the genus (Coleoptera, Dytiscidae). Zootaxa 2641:1–14CrossRefGoogle Scholar
  91. Ribera I, Mateu J, Bellés X (2005) Phylogenetic relationships of Dalyat mirabilis Mateu, 2002, with a revised molecular phylogeny of ground beetles (Coleoptera, Carabidae). J Zoolog Syst Evol Res 43:284–296CrossRefGoogle Scholar
  92. Ribera I, Montagud S, Teruel S et al (2006) Molecular data supports the inclusion of Ildobates neboti Español in Zuphiini (Coleoptera: Carabidae: Harpalinae). Entomol Fenn 17:207–213Google Scholar
  93. Ribera I, Fresneda J, Bucur R et al (2010) Ancient origin of a western Mediterranean radiation of subterranean beetles. BMC Evol Biol 10:1–14CrossRefGoogle Scholar
  94. Rizzo V, Comas J, Fadrique F et al (2013) Early Pliocene range expansion of a clade of subterranean Pyrenean beetles. J Biogeogr 40:1861–1873Google Scholar
  95. Rizzo V, Sánchez-Fernández D, Fresneda J et al (2015) Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles. BMC Evol Biol 15:10PubMedPubMedCentralCrossRefGoogle Scholar
  96. Romero A (2009) Cave biology: life in darkness (Ecology, biodiversity and conservation), 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  97. Sánchez-Fernández D, Rizzo V, Cieslak A et al (2016) Thermal niche estimators and the capability of poor dispersal species to cope with climate change. Sci Rep 6:23381PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stone G, French V (2003) Evolution: have wings come, gone and come again? Curr Biol 13:R436–R438PubMedCrossRefGoogle Scholar
  99. Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432CrossRefGoogle Scholar
  100. Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  101. Vandel A (1964) Biospéologie. La biologie des animaux cavernicoles. Gauthier-Villars, ParisGoogle Scholar
  102. Vargas AO (2009) Did Paul Kammerer discover epigenetic inheritance? A modern look at the controversial midwife toad experiments. J Exp Zool 312B:667–678CrossRefGoogle Scholar
  103. Vogler AP, Ribera I (2003) Evolutionary analysis of species richness patterns in aquatic beetles: why macroecology needs a historical perspective. In: Gaston KJ, Blackburn T (eds) Macroecology: concepts and consequences. Blackwell, Oxford, pp 17–30Google Scholar
  104. Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature 421:264–267PubMedCrossRefGoogle Scholar
  105. Wiens JJ, Chippindale PT, Hillis DM (2003) When are phylogenetic analyses misled by convergence? a case study in Texas cave salamanders. Syst Biol 52:501–514PubMedCrossRefGoogle Scholar
  106. Wilkens H (1987) Genetic analysis of evolutionary processes. Int J Speleol 16:33–58CrossRefGoogle Scholar
  107. Zakšek V, Sket B, Trontelj P (2007) Phylogeny of the cave shrimp Troglocaris: evidence of a young connection between Balkans and Caucasus. Mol Phylogenet Evol 42:223–235CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ignacio Ribera
    • 1
    Email author
  • Alexandra Cieslak
    • 1
  • Arnaud Faille
    • 1
  • Javier Fresneda
    • 2
    • 3
  1. 1.Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra)BarcelonaSpain
  2. 2.Ca de MassaLleidaSpain
  3. 3.Museu de Ciències Naturals (Zoologia)BarcelonaSpain

Personalised recommendations