Advertisement

BOUNCER: Privacy-Aware Query Processing over Federations of RDF Datasets

  • Kemele M. Endris
  • Zuhair Almhithawi
  • Ioanna Lytra
  • Maria-Esther Vidal
  • Sören Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11029)

Abstract

Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for the citizens. However, effective data-centric applications demand data management techniques able to process a large volume of data which may include sensitive data, e.g., financial transactions, medical procedures, or personal data. Managing sensitive data requires the enforcement of privacy and access control regulations, particularly, during the execution of queries against datasets that include sensitive and non-sensitive data. In this paper, we tackle the problem of enforcing privacy regulations during query processing, and propose BOUNCER, a privacy-aware query engine over federations of RDF datasets. BOUNCER allows for the description of RDF datasets in terms of RDF molecule templates, i.e., abstract descriptions of the properties of the entities in an RDF dataset and their privacy regulations. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over RDF datasets that not only contain the relevant entities to answer a query, but that are also regulated by policies that allow for accessing these relevant entities. We empirically evaluate the effectiveness of the BOUNCER privacy-aware techniques over state-of-the-art benchmarks of RDF datasets. The observed results suggest that BOUNCER can effectively enforce access control regulations at different granularity without impacting the performance of query processing.

Notes

Acknowledgements

This work has been funded by the EU H2020 RIA under the Marie Skłodowska-Curie grant agreement No. 642795 (WDAqua) and EU H2020 Programme for the project No. 727658 (IASIS).

References

  1. 1.
    Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_2CrossRefGoogle Scholar
  2. 2.
    Amini, M., Jalili, R.: Multi-level authorisation model and framework for distributed semantic-aware environments. IET Inf. Secur. 4(4), 301–321 (2010)CrossRefGoogle Scholar
  3. 3.
    Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., Rogers, J.: SMCQL: secure querying for federated databases. Proc. VLDB Endow. 10(6), 673–684 (2017)CrossRefGoogle Scholar
  4. 4.
    Bonatti, P.A., Olmedilla, D.: Rule-based policy representation and reasoning for the semantic web. In: Antoniou, G., et al. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 240–268. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74615-7_4CrossRefGoogle Scholar
  5. 5.
    Costabello, L., Villata, S., Gandon, F.: Context-aware access control for RDF graph stores. In: ECAI-20th European Conference on Artificial Intelligence (2012)Google Scholar
  6. 6.
    De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati, P.: Authorization enforcement in distributed query evaluation. JCS 19(4), 751–794 (2011)CrossRefGoogle Scholar
  7. 7.
    Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, M.-E., Auer, S.: MULDER: querying the linked data web by bridging RDF molecule templates. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 3–18. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64468-4_1CrossRefGoogle Scholar
  8. 8.
    Khan, Y., et al.: SAFE: SPARQL federation over RDF data cubes with access control. J. Biomed. Semant. 8(1) (2017)Google Scholar
  9. 9.
    Kirrane, S., Abdelrahman, A., Mileo, A., Decker, S.: Secure manipulation of linked data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 248–263. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_16CrossRefGoogle Scholar
  10. 10.
    Kost, M., Freytag, J.-C.: SWRL-based access policies for linked data (2010)Google Scholar
  11. 11.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_38CrossRefGoogle Scholar
  12. 12.
    Unbehauen, J., Frommhold, M., Martin, M.: Enforcing scalable authorization on SPARQL queries. In: SEMANTiCS (Posters, Demos, SuCCESS) (2016)Google Scholar
  13. 13.
    Vidal, M.-E., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., Polleres, A.: Efficiently joining group patterns in SPARQL queries. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13486-9_16CrossRefGoogle Scholar
  14. 14.
    Zadorozhny, V., Raschid, L., Vidal, M., Urhan, T., Bright, L.: Efficient evaluation of queries in a mediator for websources. In: ACM SIGMOD (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kemele M. Endris
    • 1
  • Zuhair Almhithawi
    • 2
  • Ioanna Lytra
    • 2
    • 4
  • Maria-Esther Vidal
    • 1
    • 3
  • Sören Auer
    • 1
    • 3
  1. 1.L3S Research CenterHanoverGermany
  2. 2.University of BonnBonnGermany
  3. 3.TIB Leibniz Information Centre for Science and TechnologyHanoverGermany
  4. 4.Fraunhofer IAISSankt AugustinGermany

Personalised recommendations