Advertisement

On Link Stability Detection for Online Social Networks

  • Ji Zhang
  • Xiaohui Tao
  • Leonard Tan
  • Jerry Chun-Wei Lin
  • Hongzhou Li
  • Liang Chang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11029)

Abstract

Link stability detection has been an important and long-standing problem within the link prediction domain. However, it has often been overlooked as being trivial and has not been adequately dealt with in link prediction. In this paper, we present an innovative method: Multi-Variate Vector Autoregression (MVVA) analysis to determine link stability. Our method adopts link dynamics to establish stability confidence scores within a clique sized model structure observed over a period of 30 days. Our method also improves detection accuracy and representation of stable links through a user-friendly interactive interface. In addition, a good accuracy to performance trade-off in our method is achieved through the use of Random Walk Monte Carlo estimates. Experiments with Facebook datasets reveal that our method performs better than traditional univariate methods for stability identification in online social networks.

Keywords

Link stability Graph theory Online social networks Hamiltonian Monte Carlo (HMC) 

Notes

Acknowledgment

This research was partially supported by Guangxi Key Laboratory of Trusted Software (No. kx201615), Shenzhen Technical Project (JCYJ20170307151733005 and KQJSCX20170726103424709), Capacity Building Project for Young University Staff in Guangxi Province, Department of Education of Guangxi Province (No. ky2016YB149).

References

  1. 1.
    Ozcan, A., Oguducu, S.G.: Multivariate temporal link prediction in evolving social networks. In: International Conference on Information Systems 2015 (ICIS-2015), pp. 113–118 (2015)Google Scholar
  2. 2.
    Mengshoel, O.J., Desai, R., Chen, A., Tran, B.: Will we connect again? machine learning for link prediction in mobile social networks. In: Eleventh Workshop on Mining and Learning with Graphs. Chicargo, Illinois 2013, pp. 1–6 (2013)Google Scholar
  3. 3.
    Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)CrossRefGoogle Scholar
  4. 4.
    Chakraborty, T., Srinivasan, S., Ganguly, N., Bhowmick, S., Mukherjee, A.: Constant communities in complex networks (2013). arXiv preprint arXiv:1302.5794
  5. 5.
    Sohl-Dickstein, J., Mudigonda, M., DeWeese, M.R.: Hamiltonian Monte Carlo without detailed balance. In: Proceedings of the 31st International Conference on Machine Learning (JMLR), vol. 32 (2014)Google Scholar
  6. 6.
    Farasat, A., Nikolaev, A., Srihari, S.N., Blair, R.H.: Probabilistic graphical models in modern social network analysis. Soc. Netw. Anal. Min. 5(1), 62 (2015)CrossRefGoogle Scholar
  7. 7.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM (2009)Google Scholar
  8. 8.
    Girolami, M., Calderhead, B., Chin, S.A.: Riemannian manifold Hamiltonian Monte Carlo. Arxiv preprint, 6 July 2009Google Scholar
  9. 9.
    Meyer, H., Simma, H., Sommer, R., Della Morte, M., Witzel, O., Wolff, U., Alpha Collaboration: Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD. Comput. Phys. Commun. 176(2), 91–97 (2007)Google Scholar
  10. 10.
    Read, J., Martino, L., Luengo, D.: Efficient monte carlo methods for multi-dimensional learning with classifier chains. Pattern Recogn. 47(3), 1535–1546 (2014)CrossRefGoogle Scholar
  11. 11.
    Pakman, A., Paninski, L.: Auxiliary-variable exact Hamiltonian Monte Carlo samplers for binary distributions. In: Advances in Neural Information Processing Systems, pp. 2490–2498 (2013)Google Scholar
  12. 12.
    Hoffman, M.D., Gelman, A.: The No-U-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. J. Mach. Learn. Res. 15, 1351–1381 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rodriguez, A.: Modeling the dynamics of social networks using Bayesian hierarchical blockmodels. Stat. Anal. Data Min. 5(3), 218–234 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hunter, D.R., Krivitsky, P.N., Schweinberger, M.: Computational statistical methods for social network models. J. Comput. Graph. Stat. 21(4), 856–882 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nightingale, G., Boogert, N.J., Laland, K.N., Hoppitt, W.: Quantifying diffusion in social networks: a Bayesian approach. In: Animal Social Networks, pp. 38–52. Oxford University Press, Oxford (2014)Google Scholar
  16. 16.
    Fan, Y, Shelton. C.R.: Learning continuous-time social network dynamics. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 18 Jun 2009, pp. 161–168. AUAI Press (2009)Google Scholar
  17. 17.
    Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their evolutions in dynamic social networks - a Bayesian approach. Mach. Learn. 82(2), 157–189 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mossel, E., Sly, A., Tamuz, O.: Asymptotic learning on bayesian social networks. Probab. Theor. Relat. Fields 158(1–2), 127–157 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gale, D., Kariv, S.: Bayesian learning in social networks. Games Econ. Behav. 45(2), 329–346 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Needham, C.J., Bradford, J.R., Bulpitt, A.J., Westhead, D.R.: A primer on learning in Bayesian networks for computational biology. PLoS Comput. Biol. 3(8), e129 (2007)CrossRefGoogle Scholar
  21. 21.
    Gardella, C., Marre, O., Mora, T.: A tractable method for describing complex couplings between neurons and population rate. In: eNeuro, 1 July 2016, vol. 3, no. 4 (2016). ENEURO-0160Google Scholar
  22. 22.
    Getoor, L., Diehl, C.P.: Link mining: a random graph models approach. J. Soc. Struct. 7(2), 3–12 (2005). 2002 Apr survey. ACM SIGKDD Explorations NewsletterGoogle Scholar
  23. 23.
    Nguyen, N.P., Alim, M.A., Dinh, T.N., Thai, M.T.: A method to detect communities with stability in social networks. Soc. Netw. Anal. Min. 4(1), 1–15 (2014)CrossRefGoogle Scholar
  24. 24.
    Liu, F., Liu, B., Sun, C., Liu, M., Wang, X.: Deep belief network-based approaches for link prediction in signed social networks. Entropy 17(4), 2140–2169 (2015). Multidisciplinary Digital Publishing InstituteCrossRefGoogle Scholar
  25. 25.
    Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)Google Scholar
  26. 26.
    Zhou, X., Tao, X., Rahman, M.M., Zhang, J.: Coupling topic modelling in opinion mining for social media analysis. In: Proceedings of the International Conference on Web Intelligence, pp. 533–540. ACM (2017)Google Scholar
  27. 27.
    Tao, X., Zhou, X., Zhang, J., Yong, J.: Sentiment analysis for depression detection on social networks. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q.Z. (eds.) ADMA 2016. LNCS (LNAI), vol. 10086, pp. 807–810. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49586-6_59CrossRefGoogle Scholar
  28. 28.
    Zhang, J., Tan, L., Tao, X., Zheng, X., Luo, Y., Lin, J.C.-W.: SLIND: Identifying stable links in online social networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10828, pp. 813–816. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91458-9_54CrossRefGoogle Scholar
  29. 29.
    Zhang, J., Tao, X., Tan, L.: On relational learning and discovery: a survey. Int. J. Mach. Learn. Cybern. 2(2), 88–114 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Engineering and SciencesThe University of Southern QueenslandToowoombaAustralia
  2. 2.Harbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  3. 3.School of Life and Environmental ScienceGuilin University of Electronic TechnologyGuilinChina
  4. 4.Guangxi Key Laboratory of Trusted SoftwareGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations