Advertisement

Asymptotic Quasi-completeness and ZFC

  • Mirna Džamonja
  • Marco Panza
Chapter
Part of the Trends in Logic book series (TREN, volume 47)

Abstract

The axioms ZFC of first order set theory are one of the best and most widely accepted, if not perfect, foundations used in mathematics. Just as the axioms of first order Peano Arithmetic, ZFC axioms form a recursively enumerable list of axioms, and are, then, subject to Gödel’s Incompleteness Theorems. Hence, if they are assumed to be consistent, they are necessarily incomplete. This can be witnessed by various concrete statements, including the celebrated Continuum Hypothesis CH. The independence results about the infinite cardinals are so abundant that it often appears that ZFC can basically prove very little about such cardinals. However, we put forward a thesis that ZFC is actually very powerful at some infinite cardinals, but not at all of them. We have to move away from the first few and to look at limits of uncountable cardinals, such as \( \aleph _\omega \). Specifically, we work with singular cardinals (which are necessarily limits) and we illustrate that at such cardinals there is a very serious limit to independence and that many statements which are known to be independent on regular cardinals become provable or refutable by ZFC at singulars. In a certain sense, which we explain, the behavior of the set-theoretic universe is asymptotically determined at singular cardinals by the behavior that the universe assumes at the smaller regular cardinals. Foundationally, ZFC provides an asymptotically univocal image of the universe of sets around the singular cardinals. We also give a philosophical view accounting for the relevance of these claims in a platonistic perspective which is different from traditional mathematical platonism.

Notes

Acknowledgements

The first author gratefully acknowledges the help of EPSRC through the grant EP/I00498, Leverhulme Trust through research Fellowship 2014–2015 and l’Institut d’Histoire et de Philosophie des Sciences et des Techniques, Université Paris 1, where she is an Associate Member. The second acknowledges the support of ANR through the project ObMathRe. The authors are grateful to Walter Carnielli for his instructive comments on a preliminary version of the manuscript, and to Marianna Antonutti-Marfori, Drew Moshier and Rachael Schiel for valuable suggestions.

References

  1. 1.
    Ackerman, Diana. 1978. De re propositional attitudes toward integers. The Southwestern Journal of Philosophy 9 (2): 145–153.CrossRefGoogle Scholar
  2. 2.
    Ackermann, Wilhelm. 1937. Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114 (1): 305–315.CrossRefGoogle Scholar
  3. 3.
    Azzouni, Jody. 2009. Empty de re attitudes about numbers. Philosophia Mathematica, ser. III, 17 (2):163–188.CrossRefGoogle Scholar
  4. 4.
    Boolos, George. 1999. Logic, Logic and Logic. Cambridge (Mass): Harvard University Press.Google Scholar
  5. 5.
    Bukovský, Lev. 1965. The continuum problem and powers of alephs. Commentationes Mathematicae Universitatis Carolinae 6: 181–197.Google Scholar
  6. 6.
    Burge, Tyler. 2007. Postscipt to “Belief De Re”. In Foundations of Mind. Philosophical Essays, ed. by Tyler Burge, vol. 2, pp. 65–81. Oxford: Clarendon Press.Google Scholar
  7. 7.
    Chung Chang, Chen, and H. Jeremy Keisler. 1990. Model Theory, 3rd edn. Amsterdam: North Holland.Google Scholar
  8. 8.
    Cohen, Paul. 1963. The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America 50 (6): 1143–1148.CrossRefGoogle Scholar
  9. 9.
    Cummings, James, Mirna Džamonja, Menachem Magidor, Charles Morgan, and Saharon Shelah. 2017. A framework for forcing constructions at successors of singular cardinals. TAMS 369 (10): 7405–7441.CrossRefGoogle Scholar
  10. 10.
    Dedekind, Richard. 1888. Was sind und was sollen die Zahlen? F. Viewing and Sohn in Braunschweig.Google Scholar
  11. 11.
    Devlin, Keith I., and R.B. Jensen. 1975. Marginalia to a theorem of Silver. In \(\models \)ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974), pp. 115–142. Lecture Notes in Math., Vol. 499. Berlin: Springer.Google Scholar
  12. 12.
    Džamonja, Mirna. 2015. The singular world of singular cardinals. In Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, ed. by Åsa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, pp. 139–146, Boston. De Gryter.Google Scholar
  13. 13.
    Džamonja, Mirna. 2016. Universal infinite clique-omitting graphs. Sarajevo Journal of Mathematics, 12 (25): 151–154.Google Scholar
  14. 14.
    Džamonja, Mirna, and Saharon Shelah. 2003. Universal graphs at the successor of a singular cardinal. Journal of Symbolic Logic 68: 366–387.CrossRefGoogle Scholar
  15. 15.
    Džamonja, Mirna, and Saharon Shelah. 2004. On the existence of universal models. Archive for Mathematical Logic 43 (7): 901–936.CrossRefGoogle Scholar
  16. 16.
    Easton, William B. 1970. Powers of regular cardinals. Annals of Mathematical Logic 1: 139–178.CrossRefGoogle Scholar
  17. 17.
    Galvin, Fred, and András Hajnal. 1975. Inequalities for cardinal powers. Annals of Mathematics 2 (101): 491–498.CrossRefGoogle Scholar
  18. 18.
    Gitik, Moti. 1980. All uncountable cardinals can be singular. Israel Journal of Mathematics 35 (1–2): 61–88.CrossRefGoogle Scholar
  19. 19.
    Gödel, Kurt. 1931. Über formal unentscheidbare Säztze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38: 173–198.CrossRefGoogle Scholar
  20. 20.
    Gödel, Kurt. 1997. The Consistency of the Continuum-Hypothesis. Princeton: Princeton University Press.Google Scholar
  21. 21.
    Hechler, Stephen H. 1973. Powers of singular cardinals and a strong form of the negation of the generalized continuum hypothesis. Z. Math. Logik Grundlagen Math. 19: 83–84.CrossRefGoogle Scholar
  22. 22.
    Heck, Richard G. 2011. Frege’s Theorem. Oxford: Clarendon Press.Google Scholar
  23. 23.
    Hell, Pavol, and Jaroslav Nešetřil. 2004. Graphs and homomorphisms, vol. 28., Oxford Lecture Series in Mathematics and its Applications Oxford: Oxford University Press.Google Scholar
  24. 24.
    Hilbert, David, and Paul Bernays. 1934–1939. Grundlagen der Mathematik, vol. 2. Berlin, Heidelberg, New York: Springer. Second edition: 1968–1970.Google Scholar
  25. 25.
    Heylen, Jan. 2014. The epistemic significance of numerals Synthese, Published online on September 6th.  https://doi.org/10.1007/s11229-014-0542-y.
  26. 26.
    Jané, Ignacio. Higher-order logic reconsidered. In [37], pp. 781–808.CrossRefGoogle Scholar
  27. 27.
    Jech, Thomas. 2003. Set Theory, 3rd millenium edn. Berlin Heidelberg: Springer.Google Scholar
  28. 28.
    Kojman, Menachem. 2011. Singular Cardinals: from Hausdorff’s gaps to Shelah’s pcf theory. In Sets and Extensions in the Twentieth Century ed. by Dov M. Gabbay, Akihiro Kanamori, and John Woods, vol. 6 of Handbook of the History of Logic, pp. 509–558. Elsevier.Google Scholar
  29. 29.
    Kripke, Saul. 1992. Whitehead Lectures. Umpupished transcription of Kripke’s lectures delivered at Harvard University on May 5th-6th.Google Scholar
  30. 30.
    Kojman, Menachem, and Saharon Shelah. 1992. Nonexistence of universal orders in many cardinals. Journal of Symbolic Logic 57 (3): 875–891.CrossRefGoogle Scholar
  31. 31.
    Magidor, Menachem. 1977. On the singular cardinals problem. I. Israel Journal of Mathematics 28 (1–2): 1–31.CrossRefGoogle Scholar
  32. 32.
    Mekler, A. 1990. Universal structures in power \(\aleph _1\). Journal of Symbolic Logic 55 (2): 466–477.CrossRefGoogle Scholar
  33. 33.
    Rado, Richard. 1964. Universal graphs and universal functions. Acta Arithmetica 9: 331–340.CrossRefGoogle Scholar
  34. 34.
    Salanskis, Jean-Michel. 1991. L’heméneutique formelle. Paris: Éditions du CNRS.Google Scholar
  35. 35.
    Salanskis, Jean-Michel. 2008. Philosphie des mathématiques. Paris: Vrin.Google Scholar
  36. 36.
    Scott, Dana. 1961. Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9: 521–524.Google Scholar
  37. 37.
    Shapiro, Stewart. 2005. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford, New York: Oxford University Press.Google Scholar
  38. 38.
    Shapiro, Stewart. 2017. Computing with numbers and other non-syntactic things: De re knowledge of abstract. Philosophia Mathematica, ser. III, 25 (2): 268–281.CrossRefGoogle Scholar
  39. 39.
    Steiner, Mark. 2011. Kripke on logicism, Wittgenstein, and de re beliefs about numbers. In Saul Kripke, ed. Alan Berger, 160–176. New York: Cambridge University Press.CrossRefGoogle Scholar
  40. 40.
    Shelah, Saharon. 1975. A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals. Israel Journal of Mathematics 21 (4): 319–349.CrossRefGoogle Scholar
  41. 41.
    Shelah, Saharon. 1984. On universal graphs without instances of CH. Annals of Pure and Applied Logic 26 (1): 75–87.CrossRefGoogle Scholar
  42. 42.
    Shelah, Saharon. 1990. Universal graphs without instances of CH: revisited. Israel Journal of Mathematics 70 (1): 69–81.CrossRefGoogle Scholar
  43. 43.
    Shelah, Saharon. 1994. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.Google Scholar
  44. 44.
    Silver, Jack. 1975. On the singular cardinals problem. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pp. 265–268. Canad. Math. Congress, Montreal, Que.Google Scholar
  45. 45.
    Solovay, Robert M. 1965. \(2^{\aleph_0}\) can be anything it ought to be. In The theory of models. Proceedings of the 1963 International Symposium at Berkeley, ed. by J. W. Addison, Leon Henkin, and Alfred Tarski, pp. 435, Amsterdam, North-Holland Publishing Co.Google Scholar
  46. 46.
    Solovay, Robert M. 1974. Strongly compact cardinals and the GCH. In Proceedings of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics, ed. by Leon Henkin, John Addison, William Craig, Dana Scott, and Robert Vaught, Vol. XXV, pp. 365–372. Published for the Association for Symbolic Logic by the American Mathematical Society, Providence, R. I.Google Scholar
  47. 47.
    Walsh, S. 2012. Comparing Peano arithmetic, Basic Law V, and Hume’s Principle. Annals of Pure and Applied Logic 163: 1679–1709.CrossRefGoogle Scholar
  48. 48.
    Walsh, S., and S. Ebels-Duggan. 2015. Relative categoricity and abstraction principles. The Review of Symbolic Logic 8 (3): 572–606.CrossRefGoogle Scholar
  49. 49.
    Wright, Crispin. 1983. Frege’s conception of numbers as objects. Aberdeen: Aberdeen University Press.Google Scholar
  50. 50.
    Zermelo, Ernst. 1930. Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae 16: 29–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of East AngliaNorwichUK
  2. 2.CNRS, IHPST (CNRS and Université Paris 1, Panthéon-Sorbonne)ParisFrance
  3. 3.Chapman UniversityOrangeUSA

Personalised recommendations