Role of TGF-β in Alcohol-Induced Liver Disease

  • Wilma Jogunoori
  • Lopa MishraEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1032)


Over 90% of hepatocellular carcinoma (HCC) occurs against a background of chronic liver disease or cirrhosis induced from viral hepatitis to alcohol injury. One third of patients with cirrhosis will develop HCC during their lifetime, with a 3–5% annual incidence. However, little is known about the key mechanisms by which toxins mediate DNA damage in the liver. Recent studies support a central role for TGF-β signaling in conferring genomic stability yet the precise mechanism of action and the specific stages of tumor suppression remain unclear (Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ. J Clin Invest 119:3408–3419 (2009); Korc M. J Clin Invest 119:3208–3211 (2009); Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH. Proc Natl Acad Sci U S A 96:14949–14954 (1999)). Furthermore, it has recently been shown that β2SP+/− and β2SP+/−/Smad3+/− mice phenocopy a hereditary human cancer syndrome, the Beckwith-Wiedemann syndrome (BWS), which has an 800 fold risk of cancers including HCC, hepatoblastoma, and a range of liver disorders. Identifying key biological pathways and mechanisms for suppressing alcohol-induced stem cell injury and HCC will be critical for enhancing patient care and the employment of new therapeutic approaches.


Hepatocellular Carcinoma Cirrhosis TGF-β Beckwith-Wiedemann syndrome 


  1. 1.
    Abdollah S, Macias-silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685CrossRefGoogle Scholar
  2. 2.
    Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163CrossRefGoogle Scholar
  3. 3.
    Attisano L, Wrana JL (1998) Mads and Smads in TGF beta signalling. Curr Opin Cell Biol 10:188–194CrossRefGoogle Scholar
  4. 4.
    Barcellos-Hoff MH (2005) Integrative radiation carcinogenesis: interactions between cell and tissue responses to DNA damage. Semin Cancer Biol 15:138–148CrossRefGoogle Scholar
  5. 5.
    Barcellos-Hoff MH, Brooks AL (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 156:618–627CrossRefGoogle Scholar
  6. 6.
    Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107:873–877CrossRefGoogle Scholar
  7. 7.
    Beckwith, J. (1963). Extreme cytomegaly of the adrenal fetal cortex, omphalocele, hyperplasia of kidneys and pancreas, and Leydig-cell hyperplasia: another syndrome? 11th Annual Meeting of Western Society for Pediatric Reserach, Los AngelesGoogle Scholar
  8. 8.
    JB B, Donnel WC et al (1964) Hyperplastic fetal visceromegaly mith macroglossia, omphalocele, cytomegaly of adrenal fetal cortex, postnatal somatic gigantism and other abnormalties: newly recognized syndrome. In: Proceedings of the American Pediatric SocietyGoogle Scholar
  9. 9.
    Birchenall-Roberts MC, Fu T, Bang OS, Dambach M, Resau JH, Sadowski CL, Bertolette DC, Lee HJ, Kim SJ, Ruscetti FW (2004) Tuberous sclerosis complex 2 gene product interacts with human SMAD proteins . A molecular link of two tumor suppressor pathways. J Biol Chem 279:25605–25613CrossRefGoogle Scholar
  10. 10.
    Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ (2009) Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119:3408–3419PubMedCentralPubMedGoogle Scholar
  11. 11.
    Chen RH, Ebner R, Derynck R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–1338CrossRefGoogle Scholar
  12. 12.
    Chen Y, Lebrun JJ, Vale W (1996) Regulation of transforming growth factor beta- and activin- induced transcription by mammalian mad proteins. Proc Natl Acad Sci U S A 93:12992–12997CrossRefPubMedGoogle Scholar
  13. 13.
    Chen J, Yao ZX, Chen JS, Gi YJ, Munoz NM, Kundra S, Herlong HF, Jeong YS, Goltsov A, Ohshiro K, Mistry NA, Zhang J, Su X, Choufani S, Mitra A, Li S, Mishra B, White J, Rashid A, Wang AY, Javle M, Davila M, Michaely P, Weksberg R, Hofstetter WL, Finegold MJ, Shay JW, Machida K, Tsukamoto H, Mishra L (2016) TGF-beta/beta2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome. J Clin Invest 126:527–542CrossRefPubMedGoogle Scholar
  14. 14.
    Ciuclan L, Ehnert S, Ilkavets I, Weng HL, Gaitantzi H, Tsukamoto H, Ueberham E, Meindl-Beinker NM, Singer MV, Breitkopf K, Dooley S (2010) TGF-beta enhances alcohol dependent hepatocyte damage via down-regulation of alcohol dehydrogenase I. J Hepatol 52:407–416CrossRefGoogle Scholar
  15. 15.
    De Groot RP, Kruyt FA, Van Der SaagC PT, Kruijer W (1990) Ectopic expression of c- Jun leads to differentiation of P19 embryonal carcinoma cells. EMBO J 9:1831–1837CrossRefPubMedGoogle Scholar
  16. 16.
    Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11:467–480CrossRefPubMedGoogle Scholar
  17. 17.
    Deheuninck J, Luo K (2009) Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19:47–57CrossRefPubMedGoogle Scholar
  18. 18.
    Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584CrossRefGoogle Scholar
  19. 19.
    Dooley S, Ten Dijke P (2012) TGF-beta in progression of liver disease. Cell Tissue Res 347:245–256CrossRefGoogle Scholar
  20. 20.
    Feng XH, Derynck R (1997) A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J 16:3912–3923CrossRefPubMedGoogle Scholar
  21. 21.
    Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383CrossRefGoogle Scholar
  22. 22.
    Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH (1999) Defects in transforming growth factor-beta signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci U S A 96:14949–14954CrossRefPubMedGoogle Scholar
  23. 23.
    Heldin CH, Miyazono K, Ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471CrossRefPubMedGoogle Scholar
  24. 24.
    Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’connor MB, Attisano L, Wrana JL (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85:489–500CrossRefGoogle Scholar
  25. 25.
    Kaneda A, Feinberg AP (2005) Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res 65:11236–11240CrossRefGoogle Scholar
  26. 26.
    Katuri V, Tang Y, Li C, Jogunoori W, Deng CX, Rashid A, Sidawy AN, Evans S, Reddy EP, Mishra B, Mishra L (2006) Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression. Oncogene 25:1871–1886CrossRefGoogle Scholar
  27. 27.
    Keeton MR, Curriden SA, Van Zonneveld AJ, Loskutoff DJ (1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 266:23048–23052Google Scholar
  28. 28.
    Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massague J (1988) Absence of TGF- beta receptors and growth inhibitory responses in retinoblastoma cells. Science 240:196–199CrossRefGoogle Scholar
  29. 29.
    Korc M (2009) Smad4: gatekeeper gene in head and neck squamous cell carcinoma. J Clin Invest 119:3208–3211PubMedCentralPubMedGoogle Scholar
  30. 30.
    Kretzschmar M, Massague J (1998) SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 8:103–111CrossRefGoogle Scholar
  31. 31.
    Kretzschmar M, Doody J, Massague J (1997a) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622CrossRefGoogle Scholar
  32. 32.
    Kretzschmar M, Liu F, Hata A, Doody J, Massague J (1997b) The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11:984–995CrossRefGoogle Scholar
  33. 33.
    Kumaresan KR, Sridharan DM, Mcmahon LW, Lambert MW (2007) Deficiency in incisions produced by XPF at the site of a DNA interstrand cross-link in Fanconi anemia cells. Biochemistry 46:14359–14368CrossRefGoogle Scholar
  34. 34.
    Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53–58CrossRefGoogle Scholar
  35. 35.
    Le Roith D, Scavo L, Butler A (2001) What is the role of circulating IGF-I? Trends Endocrinol Metab 12:48–52CrossRefGoogle Scholar
  36. 36.
    Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang XF (1995) Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem 270:26750–26753CrossRefGoogle Scholar
  37. 37.
    Liu F, Pouponnot C, Massague J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 11:3157–3167CrossRefPubMedGoogle Scholar
  38. 38.
    Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215–1224CrossRefGoogle Scholar
  39. 39.
    Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, Yao ZX, He AR, Li S, Katz L, Farci P, Mishra L (2012) Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 9:530–538CrossRefPubMedGoogle Scholar
  40. 40.
    Massague J (2008) TGFbeta in Cancer. Cell 134:215–230CrossRefPubMedGoogle Scholar
  41. 41.
    Massey VL, Arteel GE (2012) Acute alcohol-induced liver injury. Front Physiol 3:193CrossRefPubMedGoogle Scholar
  42. 42.
    Mcmahon LW, Walsh CE, Lambert MW (1999) Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J Biol Chem 274:32904–32908CrossRefGoogle Scholar
  43. 43.
    Meier D, Schindler D (2011) Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements. PLoS One 6:e22911CrossRefPubMedGoogle Scholar
  44. 44.
    Miller BS, Yee D (2005) Type I insulin-like growth factor receptor as a therapeutic target in cancer. Cancer Res 65:10123–10127CrossRefGoogle Scholar
  45. 45.
    Mishra L, Derynck R, Mishra B (2005) Transforming growth factor-beta signaling in stem cells and cancer. Science 310:68–71CrossRefGoogle Scholar
  46. 46.
    Nishihara A, Hanai JI, Okamoto N, Yanagisawa J, Kato S, Miyazono K, Kawabata M (1998) Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 3:613–623CrossRefGoogle Scholar
  47. 47.
    Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17:520–527CrossRefPubMedGoogle Scholar
  48. 48.
    Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD (1986) Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet 74:143–154CrossRefGoogle Scholar
  49. 49.
    Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211CrossRefPubMedGoogle Scholar
  50. 50.
    Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62CrossRefGoogle Scholar
  51. 51.
    Resnicoff M, Burgaud JL, Rotman HL, Abraham D, Baserga R (1995) Correlation between apoptosis, tumorigenesis, and levels of insulin-like growth factor I receptors. Cancer Res 55:3739–3741Google Scholar
  52. 52.
    Sachdev D, Yee D (2001) The IGF system and breast cancer. Endocr Relat Cancer 8:197–209CrossRefGoogle Scholar
  53. 53.
    Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S, Croci S, Perdichizzi S, Zambelli D, Serra M, Garcia-Echeverria C, Hofmann F, Picci P (2005) Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP- AEW541 in musculoskeletal tumors. Cancer Res 65:3868–3876CrossRefGoogle Scholar
  54. 54.
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700CrossRefGoogle Scholar
  55. 55.
    Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, Ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272:28107–28115CrossRefGoogle Scholar
  56. 56.
    Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L (2003) Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299:574–577CrossRefGoogle Scholar
  57. 57.
    Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fishbein T, Zasloff M, Reddy EP, Mishra B, Mishra L (2005) Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 65:4228–4237CrossRefGoogle Scholar
  58. 58.
    Thenappan A, Shukla V, Abdul Khalek FJ, Li Y, Shetty K, Liu P, Li L, Johnson RL, Johnson L, Mishra L (2011) Loss of transforming growth factor beta adaptor protein beta-2 spectrin leads to delayed liver regeneration in mice. Hepatology 53:1641–1650CrossRefPubMedGoogle Scholar
  59. 59.
    Thorburn MJ, Wright ES, Miller CG, Smith-Read EH (1970) Exomphalos- macroglossia-gigantism syndrome in Jamaican infants. Am J Dis Child 119:316–321Google Scholar
  60. 60.
    Tsukamoto H, Mishra L, Machida K (2014) Alcohol, TLR4-TGF-beta antagonism, and liver cancer. Hepatol Int 8(Suppl 2):408–412CrossRefGoogle Scholar
  61. 61.
    Yao ZX, Jogunoori W, Choufani S, Rashid A, Blake T, Yao W, Kreishman P, Amin R, Sidawy AA, Evans SR, Finegold M, Reddy EP, Mishra B, Weksberg R, Kumar R, Mishra L (2010) Epigenetic silencing of beta-spectrin, a TGF-beta signaling/scaffolding protein in a human cancer stem cell disorder: Beckwith-Wiedemann syndrome. J Biol Chem 285:36112–36120CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang Y, Musci T, Derynck R (1997) The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 7:270–276CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Translational Medicine, Department of Surgery and George Washington Cancer CenterGeorge Washington UniversityWashington, DCUSA
  2. 2.Veterans Affairs Medical CenterWashington, DCUSA

Personalised recommendations