Chronic Ethanol Consumption and Generation of Etheno-DNA Adducts in Cancer-Prone Tissues

  • Teresa Peccerella
  • Tatjana Arslic-Schmitt
  • Sebastian Mueller
  • Kirstin-Berit Linhart
  • Devanshi Seth
  • Helmut Bartsch
  • Helmut K. SeitzEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1032)


Chronic ethanol consumption is a risk factor for several human cancers. A variety of mechanisms may contribute to this carcinogenic effect of alcohol including oxidative stress with the generation of reactive oxygen species (ROS), formed via inflammatory pathways or as byproducts of ethanol oxidation through cytochrome P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correlation was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-DNA adducts also increased in liver biopsies from patients with non alcoholic steatohepatitis (NASH). In various animal models with fatty liver either induced by high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is induced and paralleled by high levels of etheno DNA-adducts which may be modified by additional alcohol administration. As elevation of adduct levels in NASH children were already detected at a young age, these lesions may contribute to hepatocellular cancer development later in life. Together these data strongly implicate CYP2E1 as an important mediator for etheno-DNA adduct formation, and this detrimental DNA damage may act as a driving force for malignant disease progression.


Cytochrome P4502E1 Etheno-DNA adducts Reactive oxygen species NASH ALD Esophageal Cancer Colorectal Cancer 


  1. 1.
    Bardag-Gorce F, Oliva J, Dedes J, Li J, French BA, French SW (2009) Chronic ethanol feeding alters hepatocyte memory which is not altered by acute feeding. Alcohol Clin Exp Res 33(4):684–692CrossRefGoogle Scholar
  2. 2.
    Bartsch H, Nair J (2005) Accumulation of lipid peroxidation-derived DNA lesions: potential lead markers for chemoprevention of inflammation-driven malignancies. Mutat Res 591(1–2):34–44CrossRefGoogle Scholar
  3. 3.
    Bartsch H, Nair J (2014) Lipid peroxidation-derived DNA adduts and the role in inflammation-related carcinogenesis. In: Hiraku Y, Kawanishi S, Ohshima H (eds) Cancer and inflammation mechanisms chemical, biological and clinical aspects. Wiley, Hoboken, pp 61–74CrossRefGoogle Scholar
  4. 4.
    Frank A, Seitz HK, Bartsch H et al (2004) Immunohistochemical detection of 1,N6-ethenodeoxyadenosine in nuclei of human liver affected by diseases predisposing to hepato-carcinogenesis. Carcinogenesis 25(6):1027–1031CrossRefGoogle Scholar
  5. 5.
    Bartsch H (1999) Keynote address: exocyclic adducts as new risk markers for DNA damage in man. IARC Sci Publ 150:1–16Google Scholar
  6. 6.
    Bartsch H, Nair J (2004) Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect Prev 28(6):385–391CrossRefGoogle Scholar
  7. 7.
    Nair J, Srivatanakul P, Haas C et al (2010) High urinary excretion of lipid peroxidation-derived DNA damage in patients with cancer-prone liver diseases. Mutat Res 683(1–2):23–28CrossRefGoogle Scholar
  8. 8.
    Nair J, Furstenberger G, Burger F et al (2000) Promutagenic etheno-DNA adducts in multistage mouse skin carcinogenesis: correlation with lipoxygenase-catalyzed arachidonic acid metabolism. Chem Res Toxicol 13(8):703–709CrossRefGoogle Scholar
  9. 9.
    Marks F, Muller-Decker K, Furstenberger G (2000) A causal relationship between unscheduled eicosanoid signaling and tumor development: cancer chemoprevention by inhibitors of arachidonic acid metabolism. Toxicology 153(1–3):11–26CrossRefGoogle Scholar
  10. 10.
    Williams CS, Luongo C, Radhika A et al (1996) Elevated cyclooxygenase-2 levels in min mouse adenomas. Gastroenterology 111(4):1134–1140CrossRefGoogle Scholar
  11. 11.
    Williams MV, Lee SH, Pollack M et al (2006) Endogenous lipid hydroperoxide-mediated DNA-adduct formation in min mice. J Biol Chem 281(15):10127–10133CrossRefGoogle Scholar
  12. 12.
    Schmid K, Nair J, Winde G et al (2000) Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int J Cancer 87(1):1–4CrossRefGoogle Scholar
  13. 13.
    Linhart K, Bartsch H, Seitz HK (2014) The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol 3:56–62CrossRefGoogle Scholar
  14. 14.
    Linhart KB, Glassen K, Peccerella T et al (2015 Apr) The generation of carcinogenic etheno-DNA adducts in the liver of patients with nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr 4(2):117–123PubMedPubMedCentralGoogle Scholar
  15. 15.
    Winter CK, Segall HJ, Haddon WF (1986) Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res 46(11):5682–5686PubMedGoogle Scholar
  16. 16.
    Chung FL, Chen HJ, Nath RG (1996) Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis 17(10):2105–2111CrossRefGoogle Scholar
  17. 17.
    el Ghissassi F, Barbin A, Nair J et al (1995) Formation of 1,N6-ethenoadenine and 3,N4-ethenocytosine by lipid peroxidation products and nucleic acid bases. Chem Res Toxicol 8(2):278–283CrossRefGoogle Scholar
  18. 18.
    Vaca CE, Wilhelm J, Harms-Ringdahl M (1988) Interaction of lipid peroxidation products with DNA. A Rev Mutat Res 195(2):137–149CrossRefGoogle Scholar
  19. 19.
    Pryor WA, Porter NA (1990) Suggested mechanisms for the production of 4-hydroxy-2-nonenal from the autoxidation of polyunsaturated fatty acids. Free Radic Biol Med 8(6):541–543CrossRefGoogle Scholar
  20. 20.
    Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283(23):15545–15549CrossRefGoogle Scholar
  21. 21.
    Sodum RS, Chung FL (1991) Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res 51(1):137–143PubMedGoogle Scholar
  22. 22.
    Nair U, Bartsch H, Nair J (2007) Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 43(8):1109–1120CrossRefGoogle Scholar
  23. 23.
    Hiraku Y, Kawanishi S (2014) Role of nitrative DNA damage in inflammation related carcinogenesis. In: Ohshima H (ed) Cancer and INflammation mechanisms: chemical, biological, and chemical aspects. Wiley, Hoboken, pp 41–59CrossRefGoogle Scholar
  24. 24.
    Eberle G, Barbin A, Laib RJ et al (1989) 1,N6-etheno-2′-deoxyadenosine and 3,N4-etheno-2′-deoxycytidine detected by monoclonal antibodies in lung and liver DNA of rats exposed to vinyl chloride. Carcinogenesis 10(1):209–212CrossRefGoogle Scholar
  25. 25.
    Nair J, Nair UJ, Sun X et al (2010) Quantifying etheno-DNA adducts in human tissues, white blood cells, and urine by ultrasensitive (32)P-postlabeling and immunohistochemistry. Methods Mol Biol 682:189–205CrossRefGoogle Scholar
  26. 26.
    Nair J, Barbin A, Guichard Y et al (1995) 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabeling. Carcinogenesis 16(3):613–617CrossRefGoogle Scholar
  27. 27.
    Nair J, Godschalk RW, Nair U et al (2011) Identification of 3,N(4)-etheno-5-methyl-2′-deoxycytidine in human DNA: a new modified nucleoside which may perturb genome methylation. Chem Res Toxicol 25(1):162–169CrossRefGoogle Scholar
  28. 28.
    Barbin A (2000) Etheno-adduct-forming chemicals: from mutagenicity testing to tumor mutation spectra. Mutat Res 462(2–3):55–69CrossRefGoogle Scholar
  29. 29.
    Bartsch H, Barbin A, Marion MJ et al (1994) Formation, detection, and role in carcinogenesis of ethenobases in DNA. Drug Metab Rev 26(1–2):349–371CrossRefGoogle Scholar
  30. 30.
    Basu AK, Wood ML, Niedernhofer LJ et al (1993) Mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino-5-(imidazol-2-yl)imidazole. Biochemistry 32(47):12793–12801CrossRefGoogle Scholar
  31. 31.
    Pandya GA, Moriya M (1996) 1,N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 35(35):11487–11492CrossRefGoogle Scholar
  32. 32.
    Palejwala VA, Rzepka RW, Simha D et al (1993) Quantitative multiplex sequence analysis of mutational hot spots. Frequency and specificity of mutations induced by a site-specific ethenocytosine in M13 viral DNA. Biochemistry 32(15):4105–4111CrossRefGoogle Scholar
  33. 33.
    Moriya M, Zhang W, Johnson F et al (1994) Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A 91(25):11899–11903CrossRefGoogle Scholar
  34. 34.
    Levine RL, Yang IY, Hossain M et al (2000) Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Cancer Res 60(15):4098–4104PubMedGoogle Scholar
  35. 35.
    Swenberg JA, Fedtke N et al (1992) Etheno adducts formed in DNA of vinyl chloride-exposed rats are highly persistent in liver. Carcinogenesis 13(4):727–729CrossRefGoogle Scholar
  36. 36.
    Cheng KC, Preston BD, Cahill DS et al (1991) The vinyl chloride DNA derivative N2,3-ethenoguanine produces G–A transitions in Escherichia coli. Proc Natl Acad Sci U S A 88(22):9974–9978CrossRefGoogle Scholar
  37. 37.
    Hu W, Feng Z, Eveleigh J et al (2002) The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 23(11):1781–1789CrossRefGoogle Scholar
  38. 38.
    European Association for the Study of the Liver (2012) EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol 57(2):399–420CrossRefGoogle Scholar
  39. 39.
    Lieber CS (1999) Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)–a review. Alcohol Clin Exp Res 23(6):991–1007PubMedGoogle Scholar
  40. 40.
    Weltman MD, Farrell GC, Hall P et al (1998) Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 27(1):128–133CrossRefGoogle Scholar
  41. 41.
    Oneta CM, Lieber CS, Li J et al (2002) Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 36(1):47–52CrossRefGoogle Scholar
  42. 42.
    Lieber CS (2004) CYP2E1: from ASH to NASH. Hepatol Res 28(1):1–11CrossRefGoogle Scholar
  43. 43.
    Lu Y, Wu D, Wang X et al (2010) Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice. Free Radic Biol Med 49(9):1406–1416CrossRefGoogle Scholar
  44. 44.
    Lu Y, Zhuge J, Wang X et al (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47(5):1483–1494CrossRefGoogle Scholar
  45. 45.
    Gouillon Z, Lucas D, Li J et al (2000) Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc Soc Exp Biol Med 224(4):302–308CrossRefGoogle Scholar
  46. 46.
    Bradford BU, Kono H, Isayama F et al (2005) Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology 41(2):336–344CrossRefGoogle Scholar
  47. 47.
    Morgan K, French SW, Morgan TR (2002) Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36(1):122–134CrossRefGoogle Scholar
  48. 48.
    Butura A, Nilsson K, Morgan K et al (2009) The impact of CYP2E1 on the development of alcoholic liver disease as studied in a transgenic mouse model. J Hepatol 50(3):572–583CrossRefGoogle Scholar
  49. 49.
    Wang Y, Millonig G, Nair J et al (2009 Aug) Ethanol-induced cytochrome P4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease. Hepatology 50(2):453–461CrossRefGoogle Scholar
  50. 50.
    Millonig G, Wang Y, Homann N et al (2011) Ethanol-mediated carcinogenesis in the human esophagus implicates CYP2E1 induction and the generation of carcinogenic DNA-lesions. Int J Cancer 128(3):533–540CrossRefGoogle Scholar
  51. 51.
    Köhler BC, Arslic-Schmitt T, Pecerella T et al (2016) Possible mechanisms of ethanol mediated colorectal carcinogenesis: the role of cytochrome P4502E1, etheno-DNA adducts and the anti-apoptotic protein Mcl-1. Alcohol Clin Exp Res 40(10):2094–2101CrossRefGoogle Scholar
  52. 52.
    Chalasani N, Gorski JC et al (2003) Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 37(3):544–50.rCrossRefGoogle Scholar
  53. 53.
    Teufel U, Peccerella T, Engelmann G et al (2015) Detection of carcinogenic etheno-DNA adducts in children and adolescents with non-alcoholic steatohepatitis (NASH). Hepatobiliary Surg Nutr 4(6):426–435PubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang Y, Seitz H, Wang X (2010) Moderate alcohol consumption aggravates high-fat diet induced steatohepatitis in rats. Alcohol Clin Exp Res 34(3):567–573CrossRefGoogle Scholar
  55. 55.
    Duly AM, Alani B, Huang EY et al (2015) Effect of multiple binge alcohol on diet-induced liver injury in a mouse model of obesity. Nutr Diabetes 5:e154CrossRefGoogle Scholar
  56. 56.
    Seth D, Hogg PJ, Gorrell MD et al (2008) Direct effects of alcohol on hepatic fibrinolytic balance: implications for alcoholic liver disease. J Hepatol 48(4):614–627CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Teresa Peccerella
    • 1
  • Tatjana Arslic-Schmitt
    • 2
  • Sebastian Mueller
    • 1
    • 2
  • Kirstin-Berit Linhart
    • 2
  • Devanshi Seth
    • 3
  • Helmut Bartsch
    • 4
  • Helmut K. Seitz
    • 1
    • 2
    Email author
  1. 1.Centre of Alcohol Research (CAR)University of HeidelbergHeidelbergGermany
  2. 2.Department of MedicineSalem Medical CentreHeidelbergGermany
  3. 3.Drug Health Services, Royal Prince Alfred Hospital, and Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia; Central Clinical SchoolUniversity of SydneySydneyAustralia
  4. 4.Erstwhile: Division of Toxicology and Cancer Risk FactorsGerman Cancer Research Centre (DKFZ)HeidelbergGermany

Personalised recommendations