Virus–Host Interaction for Defense and Transmission

  • Gabriele Halwachs-BaumannEmail author


Herpesviruses have coexisted with their host for millions of year, thus having enough time to become accustomed to each other. The common ancestor of the family Herpesviridae has been proposed as having existed 400 million years ago. A number of 44 genes have passed from this ancestor to its now-existing descendents, whereas the rest of the genes have accumulated at later stages and thus differ between the members of the family [1]. HCMV, which has the largest genome among the herpesviruses, has evolved as a branch in the phylogenetic tree about 90–100 million years ago [2], and it is hypothesized that the virus is co-speciated with its host. This long-lasting interaction of virus and human led to a complex network of action and reaction on both sides and might explain the remarkable degree of strain variation, as well as the numerous possibilities in virus and host protein interaction at all stages of virus replication. One factor of success of HCMV is this good adaption to its reservoir. Since the virus needs the human for its own replication, killing its host has no benefit for the virus. The much better way to survive over the time and spread all over the world is an untroubled “subtenancy.” So, under normal circumstances, HCMV does no harm to its host, sleeping in the depth of the human body and waiting for an opportunity to spread to another individual.


  1. 1.
    Davison AJ (2011) Human herpesvirus. In: Reed D. L., Currier R. W., Walton W. F., et al. The evolution of infectious agents in relation to sex in animals and humans: brief discussions of some individual organisms. Ann N Y Acad Sci 1230:74–107PubMedPubMedCentralGoogle Scholar
  2. 2.
    Davison AJ (2002) Evolution of the herpesviruses. Vet Microbiol 86:69–88PubMedGoogle Scholar
  3. 3.
    Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Peooett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177PubMedGoogle Scholar
  4. 4.
    Mettenleiter TC, Klupp BG, Granzow H (2009) Herpesvirus assembly: an update. Virus Res 143:222–234PubMedGoogle Scholar
  5. 5.
    Vanarsdall AL, Johnson DC (2012) Human cytomegalovirus entry into cells. Curr Opin Virol 2(1):37–42PubMedGoogle Scholar
  6. 6.
    Ho M (1991) Cytomegalovirus: biology and infection, 2nd edn. Plenum Medical Book Company, New YorkGoogle Scholar
  7. 7.
    Plachter B, Sinzger C, Jahn G (1996) Cell types involved in replication and sitribution of human cytomegalovirus. Adv Virus Res 46:195–261PubMedGoogle Scholar
  8. 8.
    Sathiyamoorthy K, Chen J, Longnecker R, Jardetzky TS (2017) The COMPLEXity in herpesvirus entry. Curr Opin Virol 24:97–104PubMedGoogle Scholar
  9. 9.
    Miller MS, Hertel L (2009) Onset of human cytomegalovirus replication in fibroblasts requires the presence of an intact vimentin cytoskeleton. J Virol 83(14):7015–7028PubMedPubMedCentralGoogle Scholar
  10. 10.
    Falcão ASC, da Costa Vasconcelos PF, Lobato da Silva DF, Viana Pinheiro JJ, Falcao LFM, Quaresma JAS (2017) Mechanisms of human cytomegalovirus infection with a focus on epidermal growth factor receptor interactions. Rev Med Virol 27(6):e1955. Scholar
  11. 11.
    Kim JH, Collins-McMillen D, Caposio P, Yurochko AD (2016) Viral binding-induced signalling drives a unique and extended intracellular trafficking pattern during infection of primary monocytes. Proc Natl Acad Sci U S A 113(31):8819–8824PubMedPubMedCentralGoogle Scholar
  12. 12.
    Halary F, Amara A, Lortat-Jacob H et al (2002) Human cytomegalovirus binding to DC.SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17(5):653–664PubMedGoogle Scholar
  13. 13.
    Wu Y, Prager A, Boos S et al (2017) Human cytomegalovirus glycoprotein complex gH/gL/gO uses PDGFR-α as a key for entry. PLoS Pathog 13(4):e1006281PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gardner TJ, Tortorella D (2016) Virion glycoprotein-mediated immune evasion by human cytomegalovirus: a sticky virus makes a slick getaway. Microbiol Mol Biol Rev 80:663–677PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhou M, Lanchy JM, Ryckman BJ (2015) Human cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gH/gL/UL128-131 broadens virus tropism through a distinct mechanism. J Virol 89(17):8999–9009PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lyman MG, Enquist L (2009) Herpesvirus interactions with the host cytockeleton. J Virol 83(5):2058–2066PubMedGoogle Scholar
  17. 17.
    Sampaio KL, Cavignac Y, Stierhof YD, Sinzger C (2005) Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. J Virol 79(5):2754–2767PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim JH, Collins-McMillen D, Buehler JC, Goodrum FD, Yurochko AD (2017) Human cytomegalovirus requires epidermal growth factor receptor signaling to enter and initiate the early steps in the establishment of latency in CD34+ human progenitor cells. J Virol 91(5):e1206–e1216Google Scholar
  19. 19.
    Halwachs-Baumann G (2006) The congenital cytomegalovirus infection: virus-host interaction for defense and transmission. Curr Pharm Biotechnol 7(4):303–312PubMedGoogle Scholar
  20. 20.
    Halwachs-Baumann G, Wilders-Truschnig M, Desoye G, Hahn T, Kiesel L, Klingel G, Rieger P, Jahn G, Sinzger C (1998) Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus. J Virol 72(9):7598–7602PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kalejty RF (2008) Tegument proteins of human cytomegalovirus. Microbiol Mol Biol Rev 72(2):249–265Google Scholar
  22. 22.
    Grefte JMM, van der Giessen M, Blom N, The TH, van Son WJ (1995) Circulating cytomegalovirus-infected endothelial cells after renal transplantation: possible clue to pathophysiology? Transplant Proc 27(1):939–942PubMedGoogle Scholar
  23. 23.
    Gibson W (1991) Cytomegalovirus protein structure and function. In: Landini MP (ed) Progress in cytomegalovirus research. Elsevier Science Publishers, AmsterdamGoogle Scholar
  24. 24.
    Guo H, Shen S, Wang L, Deng H (2010) Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 1(11):987–998PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sinclair J (2009) Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta. Scholar
  26. 26.
    Dupont L, Reeves MB (2017) Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol 26(2):75–89Google Scholar
  27. 27.
    Pan X, Li XJ, Liu XJ et al (2013) Later passages of neural progenitor cells from neonatal brain are more permissive for human cytomegalovirus infection. J Virol 87(20):10968–10979PubMedPubMedCentralGoogle Scholar
  28. 28.
    Saffert RT, Penkert RR, Kalejta RF (2010) Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol 84(11):5594–5604PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87:1763–1779PubMedGoogle Scholar
  30. 30.
    Baldanti F, Paolucci S, Campanini G, Sarasini A, Percivalle E, Revello MG, Gerna G (2006) Human cytomegalovirus UL131A, UL130 and UL128 genes are highly conserved among field isolates. Arch Virol 151:1225–1233PubMedGoogle Scholar
  31. 31.
    Pignatelli S, Dal Monte P (2009) Epidemiology of human cytomegalovirus strains through comparison of methodological approaches to explore gN variants. New Microbiol 32:1–10PubMedGoogle Scholar
  32. 32.
    Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83PubMedGoogle Scholar
  33. 33.
    Bissinger AL, Sinzger C, Kaiserling E, Jahn G (2002) Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in an case of congenital inclusion disease. J Med Virol 67:200–206PubMedGoogle Scholar
  34. 34.
    Luo MH, Schwartz PH, Fortunato EA (2008) Neonatal neural progenitor cells and their neuronal and glial cell derivatives are fully permissive for human cytomegalovirus infection. J Virol 82(20):9994–10007PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sinzger C, Greefte A, Plachter B, Gouw ASH, The TH, Jahn G (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750PubMedGoogle Scholar
  36. 36.
    Tugizow S, Maidij E, Pereira L (1996) Role of apical and basolateral membranes in replication of human cytomegalovirus in polarized retinal pigment epithelial cells. J Gen Virol 77:61–74Google Scholar
  37. 37.
    Esclatine A, Lemullois M, Servin AL, Quero AM, GEniteau-Legendre M (2000) Human cytomegalovirus infects Caco-2 intestinal epithelial cells basolaterally regardless of the differentiation state. J Virol 74(1):513–517PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ryckman BJ, Jarvis MA, Drummond DD, Nelson JA, Johnson DC (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80(2):710–722PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ryckman BJ, Chase MC, Johnson DC (2008) HCMV gH/gL/UL128-131 interferes with virus entry into epithelial cells: evidence for cell type-specific receptors. Proc Natl Acad Sci U S A 105(37):14118–14123PubMedPubMedCentralGoogle Scholar
  40. 40.
    Gerna G, Sarasini A, Patrone M, Percivalle E, Fiorina L, Campanini G, Gallina A, Baldanti F, Revello MG (2008) Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblast, early during primary infection. J Gen Virol 89:853–865PubMedGoogle Scholar
  41. 41.
    Urban M, Klein M, Britt WJ, Haßfurther E, Mach M (1996) Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J Gen Virol 77:1537–1547PubMedGoogle Scholar
  42. 42.
    Boeckh M, Boivin G (1998) Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev 11(3):533–554PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ziyaeyan M, Sabahi F, Alborzi A, Ramzi M, Mahboudi F, Pourabbas B, Kadivar M (2008) Quantification of human cytomegalovirus DNA by a new capture hybrid polymerase cahin reaction enzyme-linked immunosorbent assay in plasma and peripheral blood mononuclear cells of bone marrow transplant recipients. Exp Clin Transplant 6(4):294–300PubMedGoogle Scholar
  44. 44.
    Preiser W, Brink NS, Ayliffe U, Peggs KS, Mackinnon S, Tedder RS, Garson JA (2003) Development and clinical application of a fully controlled quantitative PCR assay for cell-free cytomegalovirus in human plasma. J Clin Virol 26:49–59PubMedGoogle Scholar
  45. 45.
    Hassan-Walker AF, Mattes FM, Griffiths PD, Emera VC (2001) Quantity of cytomegalovirus DNA in different leukocyte populations during active infection in vivo and the presence of gB and UL18 transcripts. J Med Virol 64:283–289PubMedGoogle Scholar
  46. 46.
    Sinclair J (2008) Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 41:180–185PubMedGoogle Scholar
  47. 47.
    Reeves MB, Compton T (2011) Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kionase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol 85(23):12750–12758PubMedPubMedCentralGoogle Scholar
  48. 48.
    Halwachs-Baumann G, Weihrauch G, Gruber HJ, Desoye G, Sinzger C (2006) hCMV induced IL-6 release in trophoblast and trophoblastlike cells. J Clin Virol 37(2):91–97PubMedGoogle Scholar
  49. 49.
    Grefte JMM, van der Gun TF, Schmolke S, van der Giessen M, van Son WJ, Plachter B, Jahn G, The TH (1992) The lower matrix protein pp65 is the principal viral antigen present in peripheral blood leukocytes during an active cytomegalovirus infection. J Gen Virol 73:2923–2932PubMedGoogle Scholar
  50. 50.
    Gerna G, Percivalle E, Baldanti F, Sozzani S, Lanzarini P, GEnini E, Lilleri D, Revello MG (2000) Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J Virol 74(12):5629–5638PubMedPubMedCentralGoogle Scholar
  51. 51.
    Gerna G, Baldanti F, Revello G (2004) Pathogenesis of human cytomegalovirus infection and cellular targets. Hum Immunol 65:381–386PubMedGoogle Scholar
  52. 52.
    Sinzger C, Bissinger AL, Viebahn R, Oettle H, Radke C, Schmidt CA, Jahn G (1999) Hepatocytes are permissive for human cytomegalovirus infection in human liver cell culture and in vivo. J Infect Dis 180:976–986PubMedGoogle Scholar
  53. 53.
    Rollinger JM, Schmidtke M (2009) The human rhinovirus: huma-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev.
  54. 54.
    Kim WM, Sigalov B (2008) Viral pathogenesis, modulation of immune receptor signalling and treatment. Adv Exp Med Biol 640:325–349PubMedGoogle Scholar
  55. 55.
    Juckem LK, Boehme KW, Feire AL, Compton T (2008) Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol 180:4965–4977PubMedGoogle Scholar
  56. 56.
    Campell AE, Cavanaugh VJ, Slater JS (2008) The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol 197:205–213Google Scholar
  57. 57.
    Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86:435–440PubMedGoogle Scholar
  58. 58.
    Smith MG (1956) Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med 92:424–430PubMedPubMedCentralGoogle Scholar
  59. 59.
    Bahri R, Saidane-Mosbahi D, Rouabhia M (2009) Candida famata modulates toll-like receptor, ß-defensin, and proinflammatory cytokine expression by normal human epithelial cells. J Cell Physiol 222:209–218Google Scholar
  60. 60.
    Ng CT, Sullivan BM, Teijaro JR et al (2015) Blockade of interferon beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe 17:653–661PubMedPubMedCentralGoogle Scholar
  61. 61.
    Loewendorf A, Benedict CA (2010) Modulation of host innate and adaptive immune defenses by cytomegalovirus: timing is everything. J Intern Med 267(5):483–501PubMedPubMedCentralGoogle Scholar
  62. 62.
    Rus H, Cudrici C, Niculescu F (2005) The role of the complement system in innate immunity. Immunol Res 33(2):103–112PubMedGoogle Scholar
  63. 63.
    Miller-Kittrel M, Sparer TE (2009) Feeling manipulated: cytomegalovirus immune manipulation. Virol J 6:4. Scholar
  64. 64.
    Gafa V, Manches O, Pastor a, Drouet E, Ambroise-Thomas P, Grillot R, Aldebert D (2005) Human cytomegalovirus dorwnregulates complement receptors (CR3, CR4) and decreases phagocytosis by macrophages. J Med Virol 76:361–366PubMedGoogle Scholar
  65. 65.
    Wilkinson GWG, Tomasec P, Stanton RJ et al (2008) Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 41:206–212PubMedPubMedCentralGoogle Scholar
  66. 66.
    Rossini G, Cerboni C, Santoni A et al (2012) Interplay between human cytomegalovirus and intrinsic/innate host responses: a complex bidirectional relationship. Mediators Inflamm 2012:607276PubMedPubMedCentralGoogle Scholar
  67. 67.
    Varani S, Frascaroli G, Landini MP, Söderberg-Naucler C (2009) Human cytomegalovirus targets different subsets of antigen-presenting cells with pathological consequences for host immunity: implications for immunosuppression, chronic inflammation and autoimmunity. Rev Med Virol 19:131–145PubMedGoogle Scholar
  68. 68.
    Sinclair J (2008) Manipulation of dendritic cell function by human cytomegalovirus. Expert Rev Mol Med 10:e35. Scholar
  69. 69.
    Abbas AK, Lichtman AH, Pillai S (2007) Cellular and molecular immunology, 6th edn. Elsevier, Philadelphia, PAGoogle Scholar
  70. 70.
    Rölle A, Olweus J (2009) Dendritic cells in cytomegalovirus infection: viral evasion and host countermeasures. APMIS 117:413–426PubMedGoogle Scholar
  71. 71.
    Martin H, Mandron M, Davriche C (2008) Interplay between human cytomegalovirus and dendritic cells in T cell activation. Med Microbiol Immunol 197:179–184PubMedGoogle Scholar
  72. 72.
    Gandhi MK, Khanna R (2004) Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis 4:725–738PubMedGoogle Scholar
  73. 73.
    Britt W (2008) Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 325:417–470PubMedGoogle Scholar
  74. 74.
    Froberg MK (2004) CMV escapes! Ann Clin Lab Sci 34:123–130PubMedGoogle Scholar
  75. 75.
    Basta S, Bennink JR (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol 16:231–242PubMedGoogle Scholar
  76. 76.
    La Rosa C, Wang Z, Lacey SF et al (2005) Characterization of host immunity to cytomegalovirus pp150 (UL32). Hum Immunol 66(2):116–126PubMedGoogle Scholar
  77. 77.
    Gibson L, Piccinini G, Lilleri D et al (2004) Human cytomegalovirus protiens pp65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol 172(4):2256–2264PubMedGoogle Scholar
  78. 78.
    Mandron M, Martin H, Bonjean B, Lulé J, Tartour E, Davrinche C (2008) Dendritic cell-induced apoptosis of human cytomegalovirus-infected fibroblasts promotes cross-presentation of pp65 to CD8+ T cells. J Gen Virol 89:78–86PubMedGoogle Scholar
  79. 79.
    Waller ECP, Day E, Sissons JGP, Wills MR (2008) Dynamics of T cell memory inhuman cytomegalovirus infection. Med Microbiol Immunol 197:83–96PubMedGoogle Scholar
  80. 80.
    van Leeuwen EMM, de Bree GJ, ten Berge IJM, van Lier RAW (2006) Human virus-specific CD8+ T cells: diversity specialists. Immunol Rev 211:225–235PubMedGoogle Scholar
  81. 81.
    Terrazzini N, Kern F (2014) Cell-mediated immunity to human CMV infection: a brief overview. F1000Prime Rep 6:28. Scholar
  82. 82.
    Sylwester AW, Mitchell BL, Edgar JB et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the momory compartments of exposed subjects. J Exp Med 202(5):673–685PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C, Hahn G, Baldanti F, Revello MG (2005) Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL 131-128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86:275–284PubMedGoogle Scholar
  84. 84.
    van de Berg PJEJ, van Stijn A, ten Berge IJM, van Lier RAW (2008) A fingerprint left by cytomegalovirus infection in the human T cell compartment. J Clin Virol 41:213–217PubMedGoogle Scholar
  85. 85.
    Loenen WAM, Bruggeman CA, Wiertz EJHJ (2001) Immune evasion by human cytomegalovirus: lessons in immunology and cell biology. Semin Immunol 13:41–49PubMedGoogle Scholar
  86. 86.
    Zhu J, Shearer GM, Marincola FM, Norman JE, Rott D, Zou J-P, Epstein SE (2001) Discordant cellular and humoral immune responses to cytomegalovirus infection in healthy blood donors: existence of a Th1-type dominant response. Int Immunol 13:785–790PubMedGoogle Scholar
  87. 87.
    Pepperl S, Münster J, Mach M, Harris JR, Plachter B (2000) Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 74:6132–6146PubMedPubMedCentralGoogle Scholar
  88. 88.
    Schoppel K, Kropff B, Schmidt C, Vornhagen R, Mach M (1997) The humoral immune response against human cytomegalovirus is characterized by a delayed synthesis of glycoprotein-specific antibodies. J Infect Dis 175:533–544PubMedGoogle Scholar
  89. 89.
    Schoppel K, Schmidt C, Einsele H, Hebart H, Mach M (1998) Kinetics of the antibody response against human cytomegalovirus-specific proteins in allogeneic bone marrow transplant recipients. J Infect Dis 178:1233–1243PubMedGoogle Scholar
  90. 90.
    Baccard-longere M, Freimuth F, Cointe D, Seigneurin JM, Grangeot-Keros L (2001) Multicenter evaluation of a rapid and convenient method for determination of cytomegalovirus immunoglobulin G avidity. Clin Diagn Lab Immunol 8:429–431PubMedPubMedCentralGoogle Scholar
  91. 91.
    Lazzarotto T, Spezzacatena P, Pradelli P, Abate DA, Varani S, Landini MP (1997) Avidity of immunoglobulin G directed against human cystomegalovirus during primary and secondary infections in immunocompetent and immunocompromised subjects. Clin Diagn Lab Immunol 4:469–473PubMedPubMedCentralGoogle Scholar
  92. 92.
    Lazzarotto T, Spezzacatena P, Varani S, Gabrielli L, Pradelli P, Guerra B, Landini MP (1999) Anticytomegalovirus (anti-CMV) immunoglobulin G avidity in identification of pregnant women at risk of transmitting congenital CMV infection. Clin Diagn Lab Immunol 6:127–129PubMedPubMedCentralGoogle Scholar
  93. 93.
    van Zanten J, Harmsen MC, van der Giessen M, van der Bij W, Prop J, de Leij L, The TH (1995) Humoral immune response against human cytomegalovirus (HCMV)-specific proteins after HCMV infection in lung transplantation as detected with recombinant and naturally occurring proteins. Clin Diagn Lab Immunol 2:214–218PubMedPubMedCentralGoogle Scholar
  94. 94.
    Shimamura M, Mach M, Britt WJ (2006) Human cytomegalovirus infection elicits a glycoprotein M (gM)/gN-specific virus-neutralizing antibody response. J Virol 80:4591–4600PubMedPubMedCentralGoogle Scholar
  95. 95.
    Ohta A, Fujita A, Murayama T, Iba Y, Kurosawa Y, Yoshikawa T, Asano Y (2009) Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner. Microbes Infect 11(13):1029–1036. Scholar
  96. 96.
    Britt WJ, Mach M (1996) Human cytomegalovirus glycoproteins. Intervirology 39:401–412PubMedGoogle Scholar
  97. 97.
    Schoppel K, Haßfurther E, Britt W, Ohlin M, Borrebaeck CAK, Mach M (1996) Antibodies specific for the antigenic domain 1 of glycoprotein B (gpUL55) of human cytomegalovirus bind to different substructures. Virology 216:133–145PubMedGoogle Scholar
  98. 98.
    Klein M, Schoppel K, Amvrossiadis N, Mach M (1999) Strain-specific neutralization of human cytomegalovirus isolates by human sera. J Virol 73:878–886PubMedPubMedCentralGoogle Scholar
  99. 99.
    Cui X, Meza BP, Adler SP, McVoy MA (2008) Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. Vaccine 26:5760–5766PubMedPubMedCentralGoogle Scholar
  100. 100.
    Dörner T, Radbruch A (2007) Antibodies and B cell memora in viral immunity. Immunity 27:384–392PubMedGoogle Scholar
  101. 101.
    Wirtz N, Schader SI, Holtappels R, simon CO, Lemmermann NAW, Reddehase MJ, Podlech J (2008) Polyconal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med Microbiol Immunol 197:151–158PubMedGoogle Scholar
  102. 102.
    Meyer H, Sundqvist VA, Pereira L, Mach M (1992) Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies. J Gen Virol 73(Pt 9):2375–2383PubMedGoogle Scholar
  103. 103.
    Spindler N, Rücker P, Pötzsch S et al (2013) Characterization of a discontinuous neutralizing epitope on glycoprotein B of human cytomegalovirus. J Virol 87(16):8927–8939PubMedPubMedCentralGoogle Scholar
  104. 104.
    Urban M, Britt W, Mach M (1992) The dominant linear neutralizing antibody-binding site of glycoprotein gp86 of human cytomegalovirus is strain specific. J Virol 66(3):1301–1311Google Scholar
  105. 105.
    Burkhardt C, Himmelein S, Britt W, Winkler T, Mach M (2009) Glycoprotein n subtypes of human cytomegalovirus induce a strain-specific antibody response during natural infection. J Gen Virol 90(Pt 8):1951–1961PubMedGoogle Scholar
  106. 106.
    Cui X, Freed DC, Wang D et al (2017) Impact of antibodies and strain polymorphisms on cytomegalovirus entry and spread in fibroblasts and epithelial cells. J Virol 91(13):e01650–e01616PubMedPubMedCentralGoogle Scholar
  107. 107.
    Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L (2006) Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 168(4):1210–1226PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ndjamen B, Devashish SJ, Fraser SE, Bjorkman PJ (2016) Charactrization of antibody bipolar bridging mediated by the human cytomegalovirus Fc reseptor gp68. J Virol 90(6):3262–3267PubMedPubMedCentralGoogle Scholar
  109. 109.
    Kropff B, Burkhardt C, Schrott J et al (2012) Glycoprotein N of human cytomegalovirus protects the virus from neutralizing antibodies. PLoS Pathog 8(10):e1002999PubMedPubMedCentralGoogle Scholar
  110. 110.
    Silva MC, Schröer J, Shenk T (2005) Human cytomegalvorius cell-to-cell spread in the absence of an essential assembly protein. Proc Natl Acad Sci U S A 102(6):2081–2086PubMedPubMedCentralGoogle Scholar
  111. 111.
    Jacob CL, Lamorte L, Sepulveda E, Lorenz IC, Gauthier A, Franti M (2013) Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus. Virology 444:140–147PubMedGoogle Scholar
  112. 112.
    Digel M, Sampaio KL, Jahn G, Sinzger C (2006) Evidence for direct transfer of cytoplasmic material from infected to uninfected cells durin cell-associated spread of human cytomegalovirus. J Clin Virol 37:1): 10–1): 20PubMedGoogle Scholar
  113. 113.
    Longo LD, Reynolds LP (2009) Some historical scpects of understanding placental development, structure and function. Int J Dev Biol 54(2–3):237–255. Scholar
  114. 114.
    Chavan AR, Griffith OW, Wagner GP (2017) The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr Opin Genet Dev 47:24–32PubMedGoogle Scholar
  115. 115.
    Gambel P, Hunziker RD, Wegmann TG (1984) Reproductive immunology and the placental barrier hypothesis. Asian Pac J Allergy Immunol 2(2):336–338PubMedGoogle Scholar
  116. 116.
    Beer AE, Sio JO (1982) Placenta as an immunological barrier. Biol Reprod 26:15–27PubMedGoogle Scholar
  117. 117.
    Benirschke K, Kaufmann P (1995) Pathology of the human placenta, 3rd edn. Springer, New YorkGoogle Scholar
  118. 118.
    Fisher S, Genbacev O, Maidji E, Pereira L (2000) Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J Virol 74(15):6808–6820PubMedPubMedCentralGoogle Scholar
  119. 119.
    Maidji E, Percivalle E, Gerna G, Fisher S, Pereira L (2002) Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virology 304:53–69PubMedGoogle Scholar
  120. 120.
    Saji F, Samejima Y, Kamiura S, Koyama M (1999) Dynamics of immunoglobulins at the feto-maternal interface. Rev Reprod 4:81–89PubMedGoogle Scholar
  121. 121.
    Radulescu L, Antohe F, Jinga V, Ghetie V, Simionescu M (2004) Neonatal Fc receptors discriminates and monitors the pathway of native and modified immunoglobulin G in placental endothelial cells. Hum Immunol 65:578–585PubMedGoogle Scholar
  122. 122.
    Simister NE (2003) Placental transport of immunoglobulin G. Vaccine 21:3365–3369PubMedGoogle Scholar
  123. 123.
    Kane SV, Acquah LA (2009) Placental transport of immunoglobulins: a clinical review for gastroenterologists who prescribe therapeutic monoclonal antibodies to women during conception and pregnancy. Am J Gastroenterol 104:228–233PubMedGoogle Scholar
  124. 124.
    Szlauer R, Ellinger I, Haider S, Saleh L, Busch BL, Knöfler M, Fuchs R (2009) Functional expression of the human neonatal Fc-receptor, hFcRn, in isolated cultured human syncytiotrophoblasts. Placenta 30:507–515PubMedGoogle Scholar
  125. 125.
    Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast. J Immunol 157:3317–3322PubMedGoogle Scholar
  126. 126.
    Ben-Hur H, Gurevich P, Elhayany A, Avinoach I, Schneider DF, Zusman I (2005) Transport of maternal immunoglobulins through the human placental barrier in normal pregnancy and during inflammation. Int J Mol Med 16:401–407PubMedGoogle Scholar
  127. 127.
    Englund JA (2007) The influence of maternal immunization on infant immune responses. J Comp Pathol 137:S16–S19PubMedGoogle Scholar
  128. 128.
    Malek A (2003) Ex vivo human placenta models: transport of immunoglobulin G and its subclasses. Vaccine 21:3362–3364PubMedGoogle Scholar
  129. 129.
    Simister NE (1998) Human placental Fc Receptors and the trapping of immune complexes. Vaccine 16(14/15):1451–1455PubMedGoogle Scholar
  130. 130.
    Moffett A, Loke YW (2004) The immunological paradox of pregnancy: a reappraisal. Placenta 25:1–8PubMedGoogle Scholar
  131. 131.
    Jabrane-Ferrat N, Siewiera J (2016) The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology 141:490–497Google Scholar
  132. 132.
    Le Bouteiller P (2013) Human decidual NK cells: unique and tghtly regulated effector functions in healthy and pathogen-infected pregnancies. Front Immunol 4:404PubMedPubMedCentralGoogle Scholar
  133. 133.
    Rosenstein DL, Navarette-Reyna A (1964) Cytomegalic inclusion disease. Am J Obstet Gynecol 15:220–224Google Scholar
  134. 134.
    Cochard AM, Tan-Vinh L, Lelong M (1963) Le placenta dans la cytomegalie congenitale. Arch Fr Pédiatr 20:35–46PubMedGoogle Scholar
  135. 135.
    Mostoufi-zadeh M, Driscoll SG, Biano SA, Kundsin RB (1984) Placental evidence of cytomegalovirus infection of the fetus and neonate. Arch Pathol Lab Med 108:403–406PubMedGoogle Scholar
  136. 136.
    Benirschke K, Mendoza GR, Bazeley PL (1974) Placental and fetal manifestations of cytomegalovirus infection. Virchows Arch B Cell Pathol 16:121–139PubMedGoogle Scholar
  137. 137.
    Monif GRG, Dische RM (1972) Viral placentitis in congenital cytomegalovirus infection. Am J Clin Pathol 58:445–449PubMedGoogle Scholar
  138. 138.
    Altshuler G, McAdams AJ (1971) Cytomegalic inclusion disease of a nineteen-week fetus. Am J Obstet Gynecol 15:295–298Google Scholar
  139. 139.
    Mühlemann K, Miller RK, Metlay L, Menegus MA (1992) Cytomegalovirus infection of the human placenta. Hum Pathol 23(11):1234–1237PubMedGoogle Scholar
  140. 140.
    Sinzger C, Müntefering H, Löning T, Stöss H, Plachter B, Jahn G (1993) Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining. Virchows Arch A Pathol Anat Histopathol 423:249–256PubMedGoogle Scholar
  141. 141.
    McDonagh S, Maidji E, Chang HT, Pereira L (2006) Patterns of human cytomegalovirus infection in term placentas: a preliminary analysis. J Clin Virol 35:210–215PubMedGoogle Scholar
  142. 142.
    Weisblum Y, Panet A, Zakay-Rones Z et al (2011) Modeling of human cytomegalovirus maternal-fetal transmission in a novel dicidual organ culture. J Virol 85:13204–13213PubMedPubMedCentralGoogle Scholar
  143. 143.
    Tabata T, Petitt M, Fang-Hoover J, Zydek M, Pereira L (2016) Persistent cytomegalovirus infection in amniotic membranes of the human placenta. Am J Pathol 186(11):2970–2986PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hemmings DG, Kilani R, Nykiforuk C, Preiksaitis J, Guilbert LJ (1998) Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J Virol 72(6):4970–4979PubMedPubMedCentralGoogle Scholar
  145. 145.
    Hemmings DG, Guilbert LJ (2002) Polarized release of human cytomegalovirus from placental trophoblasts. J Virol 76(13):6710–6717PubMedPubMedCentralGoogle Scholar
  146. 146.
    Gabrielli L, Losi L, Varani S, Lazzarotto T, Eusebi V, Landini MP (2001) Complete replication of human cytomegalovirus in explants of first trimester human placenta. J Med Virol 64:499–504PubMedGoogle Scholar
  147. 147.
    Liu T, Zheng X, Li Q, Chen J et al (2015) Role of human cytomegalovirus in the profileration and invasion of extravillous cytotrophoblasts isolated from early placentae. Int J Clin Exp Med 8(10):17248–17260PubMedPubMedCentralGoogle Scholar
  148. 148.
    Hamilton ST, Scott G, Naing Z et al (2012) Human cytomegalovirus-induced cytokine changes in the placenta with implications for adverse pregnancy outcomes. PLoS One 7(12):e52899PubMedPubMedCentralGoogle Scholar
  149. 149.
    Garcia AGP, Fonseca EF, De Souza Marques RL, Lobato YY (1989) Placental morpholoby in cytomegalovirus infection. Placenta 10:1–18PubMedGoogle Scholar
  150. 150.
    Parry S, Holder J, Strauss JF III (1997) Mechanisms of trophoblast-virus interaction. J Reprod Immunol 37:25–34PubMedGoogle Scholar
  151. 151.
    Rassa JC, Ross SR (2003) Viruses and toll-like receptors. Microbes Infect 5:961–968PubMedGoogle Scholar
  152. 152.
    Yagel S (2009) The developmental role of natural killer cells at the fetal-maternal interface. Am J Obstet Gynecol 201(4):344–350PubMedGoogle Scholar
  153. 153.
    Xiao J, Barcia-Lloret M, Winkler-Lowen B, Miller R, Simpson K, Guilbert LJ (1997) ICAM-1-mediated adhesion of peripheral blood monocytes to the maternal surface of placental syncytiotrophoblasts. Am J Pathol 150(5):1845–1860PubMedPubMedCentralGoogle Scholar
  154. 154.
    Chan G, Stinski MF, Guilbert LJ (2004) Human cytomegalovirus-induced upregulation of intercellular cell adhesion molecule-1 on villous syncytiotrophoblasts. Biol Reprod 71:797–803PubMedGoogle Scholar
  155. 155.
    Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and toll-like receptor 2. J Virol 77(8):4588–4596PubMedPubMedCentralGoogle Scholar
  156. 156.
    Boehme KW, Guerrero M, Compton T (2006) Human cytomegalovirus envelope glycoprotein B and H are necessary for TLR2 activation in permissive cells. J Immunol 177:7094–7102PubMedGoogle Scholar
  157. 157.
    Chaudhuri S, Lowen B, Chan G, DAvey A, Riddell M, Guilbert LJ (2009) Human cytomegalovirus interacts with till-like receptor 2 and CD14 on syncytiotrophoblasts to stimulate expression of TNFα mRNA and apoptosis. Placenta 30:994–1001PubMedGoogle Scholar
  158. 158.
    Chan G, Hemmings DG, Yurochko AD, Guilbert LJ (2002) Human cytomegalovirus-caused damage to placental trophoblasts mediated by immediate-early-gene-induced tumor necrosis factor-α. Am J Pathol 161(4):1371–1381PubMedPubMedCentralGoogle Scholar
  159. 159.
    Chan G, Guilbert LJ (2005) Enhanced monocyte binding to human cytomegalovirus-infected syncytiotrophoblast results in increased apoptosis via the release of tumour necrosis factor alpha. J Pathol 207:462–470PubMedGoogle Scholar
  160. 160.
    Chan G, Guilbert LJ (2006) Ultraviolet-inactivated human cytomegalovirus induces placental syncytiotrophoblast apoptosis in a toll-like receptor-2 and tumour necrosis factor-α dependet manner. J Pathol 210:111–120PubMedGoogle Scholar
  161. 161.
    Kovács IJ, Hegedüs K, Pál A, Pusztai R (2007) Production of proinflammatory cytokines by syncytiotrophoblasts infected with human cytomegalovirus isolates. Placenta 28:620–623PubMedGoogle Scholar
  162. 162.
    Chou D, Ma Y, Zhang J, McGrath C, Parry S (2006) Cytomegalovirus infecton of trophoblast cells elicits an inflammatory response: a possible mechanism of placental dysfunction. Am J Obstet Gynecol 194:535–541PubMedGoogle Scholar
  163. 163.
    Bácsi A, Aranyosi J, Beck Z, Ebbesen P, Andirkó I, Szabo J, Lampé L, Kiss J, Gergely L, Tóth F (1999) Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-ß1. J Interf Cytokine Res 19:1153–1160Google Scholar
  164. 164.
    Tóth FD, Mosbor-Petersen P, Kiss J, Aboagye-Mathiesen G, Hager H, Juhl CB, Gergely L, Zdravkovic M, Aranyosi J, Lampe L, Ebbesen P (1995) Interaction between human immunodeficiency virus type 1 and human cytomegalovirus in human term syncytiotrophoblast cells coinfected with both viruses. J Virol 69(4):2223–2232PubMedPubMedCentralGoogle Scholar
  165. 165.
    Pereira L, Maidji E, McDonagh S, Genbacev O, Fisher S (2003) Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J Virol 77(24):13301–13314PubMedPubMedCentralGoogle Scholar
  166. 166.
    McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L (2004) Viral and bacterial pathogens at the maternal-fetal interface. J Infect Dis 190:826–834PubMedGoogle Scholar
  167. 167.
    Andrews JI, Griffith TS, Meier JL (2007) Cytomegalovirus and the role of interferon in the expression of tumor necrosis factor-related apoptosis-inducing ligand in the placenta. Am J Obstet Gynecol 197:608.e1–608.e6Google Scholar
  168. 168.
    Weisblum Y, Panet A, Zakay-Rones Z et al (2015) Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology 485:289–296PubMedGoogle Scholar
  169. 169.
    Scott GM, Chow SS, Craig ME et al (2012) Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid. J Infect Dis 205(8):1305–1310PubMedGoogle Scholar
  170. 170.
    DeMeritt IB, Milford LE, Yurochko AD (2004) Anctivation of the NF-кB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol 78(9):4498–4507PubMedPubMedCentralGoogle Scholar
  171. 171.
    Prösch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, Krüger DH (1995) Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFα is mediated via induction of NF-кB. Virology 208:197–206PubMedGoogle Scholar
  172. 172.
    DeMeritt IB, Podduturi JP, Tilley AM, Nogalski MT, Yurochko AD (2006) Prolonged activation of NF-кB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 346:15–31PubMedGoogle Scholar
  173. 173.
    Boehme KW, Singh J, Perry ST, Compton T (2004) Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J Virol 78(3):1202–1211PubMedPubMedCentralGoogle Scholar
  174. 174.
    Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES (2003) Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424:456–461PubMedGoogle Scholar
  175. 175.
    Isaacson MK, Feire AL, Compton T (2007) Epidermal growth factor receptor is not required for human cytomegalovirus entry or signalling. J Virol 81(12):6241–6247PubMedPubMedCentralGoogle Scholar
  176. 176.
    Compton T (2004) Receptors and immune sensors: the complex entry pathof human cytomegalovirus. Trends Cell Biol 14(1):5–8PubMedGoogle Scholar
  177. 177.
    Maidji E, Genbacev O, Chang HT, Pereira L (2007) Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J Virol 81(9):4701–4712PubMedPubMedCentralGoogle Scholar
  178. 178.
    Tabata T, McDonagh S, Kawakatsu H, Pereira L (2007) Cytotroblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: a quantitative analysis. Placenta 28:527–537PubMedGoogle Scholar
  179. 179.
    Schleiss MR, Aronow BJ, Handwerger S (2007) Cytomegalovirus infection of human syncytiotrophoblast cells strongly interferes with expression of genes involved in placental differentiation and tissue integrity. Pediatr Res 61(5):565–571PubMedGoogle Scholar
  180. 180.
    Rauwel B, Mariamé B, Martin H, Nielsen R, Allart S, Pipy B, Mandrup S, DEvignes MD, Evain-Brion D, Fournier T, Davrinche C (2010) Activation of PPARγ by human cytomegalovirus for de novo replication impairs migration and invasiveness of cytotrophoblast from early placenta. J Virol 84(6):2946–2954PubMedGoogle Scholar
  181. 181.
    Roth I, Fisher SJ (1999) IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol 205:194–204PubMedGoogle Scholar
  182. 182.
    Yamamoto-Tabata T, McDonagh S, Chang HT, Fisher S, Pereira L (2004) Human cytomegalovirus interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J Virol 78(6):2831–2840PubMedPubMedCentralGoogle Scholar
  183. 183.
    LaMarca HL, Nelson AB, Scandurro AB, Whitley GSJ, Morris CA (2006) Human cytomegalovirus-induced inhibition of cytotrophoblast invasion in a first trimester extravillous cytotrophoblast cell line. Placenta 27:137–147PubMedGoogle Scholar
  184. 184.
    Pereira L, Maidji E (2008) Cytomegalovirus infection in the human placenta: maternal immunity and developmentally regulated receptors on trophoblast converge. Curr Top Microbiol Immunol 325:383–395PubMedGoogle Scholar
  185. 185.
    Schust DJ, Tortorella D, Seebach J, Phan C, Ploegh HL (1998) Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med 188(3):497–503PubMedPubMedCentralGoogle Scholar
  186. 186.
    Huddleston H, Schust DJ (2004) Immune interactions at the maternal-fetal interface: a focus on antigen presentation. Am J Reprod Immunol 51:283–289PubMedGoogle Scholar
  187. 187.
    Zhang Y, Zhao A, Wang X, Shi G, Jin H, Lin Q (2008) Expressions of natural cytotoxicity receptors and NKG2D on decidual natural killer cells in patients having spontaneous abortions. Fertil Steril 90(5):1931–1937PubMedGoogle Scholar
  188. 188.
    Tilburgs T, Evans JH, Crespo AC, Strominger JL (2015) The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface. Proc Natl Acad Sci U S A 112(43):13312–13317PubMedPubMedCentralGoogle Scholar
  189. 189.
    Siewiera J, El Costa H, Tabiasco J et al (2013) Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog 9(4):e1003257PubMedPubMedCentralGoogle Scholar
  190. 190.
    Schust DJ, Tortorella D, Ploegh HL (1999) Viral immunoevasive strategies and trophoblst class I major histocompatibility complex antigens. J Reprod Immunol 43:243–251PubMedGoogle Scholar
  191. 191.
    Terauchi M, Koi H, Hayano C, Tayama-Sorimachi N, Karasuyama H, Yamanashi Y, Aso T, Shirakata M (2003) Placental extravillous cytotrophoblasts persistently express class I major histocompatibility complex molecules after human cytomegalovirus infection. J Virol 77(15):8187–8195PubMedPubMedCentralGoogle Scholar
  192. 192.
    Jun Y, Kim E, Jin M, Sung HC, Han H, Geraghty DE, Ahn K (2000) Human cytomegalovirus gene products US3 and US6 down-regulate trophoblast class I MHC molecules. J Immunol 164:805–811PubMedGoogle Scholar
  193. 193.
    Crespo A, Strominger JL, Tilburgs T (2016) Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection. Proc Natl Acad Sci U S A 113(52):15072–15077PubMedPubMedCentralGoogle Scholar
  194. 194.
    Rovito R, Claas FHJ, Haasnoot GW et al (2018) Congenital cytomegalovirus infection: maternal-child HLA-C, HLA-E, and HLA-G affect clinical outcome. Front Immunol 8:1904PubMedPubMedCentralGoogle Scholar
  195. 195.
    van Egmond A, van der Keur C, Swings GMJS, Scherjon SA, Claas FHJ (2016) The possible role of virus-specific CD8+ memory T cells in decidual tissue. J Reprod Immunol 113:1–8PubMedGoogle Scholar
  196. 196.
    Nigro G, Adler SP, LaTorre R, Best AM (2005) Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med 353:1350–1362PubMedGoogle Scholar
  197. 197.
    Adler SP, Nigro G (2008) The importance of cytomegalovirus-specific antibodies for the prevention of fetal cytomegalovirus infection or disease. Herpes 15(2):24–27PubMedGoogle Scholar
  198. 198.
    Mussi-Pinhata MM, Pinto PCG, Yamamoto AY, BErencsi K, de Souza CBS, Andrea M, Duarte G, Jorge SM (2003) Placental transfer of naturally acquired, maternal cytomegalovirus antibodies in term and preterm neonates. J Med Virol 69:232–239PubMedGoogle Scholar
  199. 199.
    Nozawa N, Fan-Hoover J, Tabata T, Maidji E, Pereira L (2009) Cytomegalovirus-specific, high-avidity IgG with neutralizing activity in maternal circulation enriched in the fetal bloodstream. J Clin Virol 46(Suppl 4):S58–S63PubMedPubMedCentralGoogle Scholar
  200. 200.
    La Torre R, Nigro G, Mazzoco M, Best Al M, Adler SP (2006) Placental enlargement in women with primary maternal cytomegalovirus infectio is associated with fetal and neonatal disease. Clin Infect Dis 43:994–1000PubMedGoogle Scholar
  201. 201.
    Schleiss MR (2006) The role of the placenta in the pathogenesis of congenital cytomegalovirus infection: is the benefit of cytomegalovirus immune globuline for the newborn mediated trough improved placental health and function? Clin Infect Dis 43:1001–1003PubMedGoogle Scholar
  202. 202.
    Pereira L, Maidji E, McDonagh S, Tabata T (2005) Insights into viral transmission at the unterine-placental interface. Trends Microbiol 13(4):164–174PubMedGoogle Scholar
  203. 203.
    Mandel B (1969) Neutralization of viral infectivity: characterization of the virus-antibody complex, including association, dissociation, and host-cell interaction. Ann N Y Acad Sci 13(83):515–527Google Scholar
  204. 204.
    Liu X, Ye L, Bai Y, Mojidi H, Simister NE, Zhu X (2008) Activation of the JAK/STAT-1 signalling pathway by IFN-γ can down-regulate functional expression of the MHC Class I-related neonatal Fc Receptor for IgG. J Immunol 181:449–463PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Laboratory MedicineRegional Hospital SteyrSteyrAustria

Personalised recommendations