Advertisement

Spatial Reasoning: A Critical Problem-Solving Tool in Children’s Mathematics Strategy Tool-Kit

  • Beth M. Casey
  • Harriet Fell
Chapter
Part of the Research in Mathematics Education book series (RME)

Abstract

This chapter reviews the spatial literature from the perspective of potential mechanisms for widening the range of spatially-based strategies available when solving math problems. We propose that teaching generalized spatial skills, disconnected from specific math content, may not be the best direction to go in future spatial interventions. Students who do not start out with strong spatial skills may need to learn to develop different types of “spatial sense” specific to each content area. Thus, acquiring and applying spatial strategies may depend in part on developing spatial sense within these specific math domains. In this chapter, we present an overview of evidence for different types of spatial sense that may serve as a prerequisite for effectively applying spatial strategies within these math content areas. The chapter also provides examples of math activities designed to help children acquire spatial sense and apply spatial strategies when solving diverse types of math problems.

Keywords

Spatial skills Math achievement Math strategies Decomposition Visualization Elementary school Fractions Geometry Arithmetic Mapping Word problems Gender differences 2- and 3-dimensional representations Mental images Spatial sense Image generation Surfaces Solids Common Core Math Standards Numerical concepts 

References

  1. Ashcraft, M. H., & Fierman, B. A. (1982). Mental addition in third, fourth, and sixth graders. Journal of Experimental Child Psychology, 33, 216–234.  https://doi.org/10.1016/0022-0965(82)90017-0CrossRefGoogle Scholar
  2. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 47–90). New York: Academic Press.Google Scholar
  3. Bailey, D. H. (2017). Causal inference and the spatial-math link in early childhood. Monographs of the Society for Research in Child Development, 82(1), 127–136.  https://doi.org/10.1111/mono.12288CrossRefGoogle Scholar
  4. Battista, M. T. (2003). Understanding students’ thinking about area and volume measurement. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: 2003 yearbook (pp. 122–142). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  5. Bjorklund, D. F., & Rosenblum, K. E. (2001). Children’s use of multiple and variable addition strategies in a game context. Developmental Science, 4(2), 184–194.  https://doi.org/10.1207/S15327647JCD0302_5CrossRefGoogle Scholar
  6. Boonen, A. J. H., van der Schoot, M., van Wesel, F., DeVries, M. H., & Jolles, J. (2013). What underlies successful word problem solving? A path analysis in sixth grade students. Contemporary Educational Psychology, 38, 271–279.  https://doi.org/10.1016/j.cedpsych.2013.05.001CrossRefGoogle Scholar
  7. Carr, M., & Alexeev, N. (2011). Fluency, accuracy, and gender predict developmental trajectories of arithmetic strategies. Journal of Educational Psychology, 103, 617–631.  https://doi.org/10.1037/a0023864CrossRefGoogle Scholar
  8. Carr, M., & Davis, H. (2002). Gender differences in mathematics strategy use: The influence of temperament. Learning and Individual Differences, 13, 83–95.  https://doi.org/10.1006/ceps.2000.1059CrossRefGoogle Scholar
  9. Carr, M., Hettinger Steiner, H. H., Kyser, B., & Biddlecomb, B. A. (2008). Comparison of predictors of early emerging gender differences in mathematics competency. Learning and Individual Differences, 18, 61–75.  https://doi.org/10.1016/j.lindif.2007.04.005CrossRefGoogle Scholar
  10. Carr, M., & Jessup, D. L. (1997). Gender differences in first-grade mathematics strategy use: Social and metacognitive influences. Journal of Educational Psychology, 89, 318–328.  https://doi.org/10.1037/0022-0663.89.2.318CrossRefGoogle Scholar
  11. Casey, B. M. (2013). Spatial abilities and individual differences. In D. A. Waller & L. Nadel (Eds.), Handbook of spatial cognition (pp. 117–134). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  12. Casey, M. B., Andrews, N., Schindler, H., Kersh, J., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block-building activities. Cognition and Instruction, 26, 269–309.  https://doi.org/10.1080/07370000802177177CrossRefGoogle Scholar
  13. Casey, M. B., Erkut, S., Ceder, I., & Mercer Young, J. (2008). Use of a storytelling context to improve girls’ and boys’ geometry skills in kindergarten. Journal of Applied Developmental Psychology, 28, 29–48.  https://doi.org/10.1016/j.appdev.2007.10.005CrossRefGoogle Scholar
  14. Casey, B. M., Dearing, E., Dulaney, A., Heyman, M., & Springer, R. (2014). Young girls’ spatial and arithmetic performance: The mediating role of maternal support during spatial problem solving. Early Childhood Research Quarterly, 29, 636–648.  https://doi.org/10.1016/j.ecresq.2014.07.005CrossRefGoogle Scholar
  15. Casey, B. M., Lombardi, C., Pollock, A., Fineman, B., Pezaris, E., & Dearing, E. (2017). Girls’ spatial skills and arithmetic strategies in first grade as predictors of fifth grade analytical math reasoning. Journal of Cognition and Development, 18(5), 530–555. https://doi.org/10.1080/15248372.2017.1363044CrossRefGoogle Scholar
  16. Casey, B. M., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learning and Individual Differences, 40, 90–100.  https://doi.org/10.1016/j.lindif.2015.03.028CrossRefGoogle Scholar
  17. Cohen, D. (1989). Calculus by and for young people. Champaign/Urbana, IL: Don Cohen-The Mathman.Google Scholar
  18. Cronin, V. (1967). Mirror-image reversal discrimination in kindergarten and first grade children. Journal of Experimental Child Psychology, 5, 577–585.CrossRefGoogle Scholar
  19. Cvencek, D., Metzoff, A. N., & Greenwald, A. C. (2011). Math gender stereotypes in elementary school children. Child Development, 82(3), 766–779.  https://doi.org/10.1111/j.1467-8624.2010.01529.xCrossRefGoogle Scholar
  20. Educational Development Center, Inc. (2008). Think math: Teacher guide, first grade. Orlando, FL: Harcourt.Google Scholar
  21. Ehrlich, S., Levine, S., & Goldin-Meadow, S. (2006). The importance of gestures in children’s spatial reasoning. Developmental Psychology, 42(6), 1259–1268.  https://doi.org/10.1037/0012-1649.42.6.1259CrossRefGoogle Scholar
  22. Fennema, E., Carpenter, T. P., Jacobs, V. R., Franke, M. L., & Levi, L. W. (1998). A longitudinal study of gender differences in young children’s mathematical thinking. Educational Researcher, 27, 6–11.Google Scholar
  23. Foley, A. E., Vasilyeva, M., & Laski, E. (2017). Children’s use of decomposition strategies mediates the visuospatial memory and arithmetic accuracy relation. British Journal of Developmental Psychology, 35(2), 303–309.  https://doi.org/10.1111/bjdp.12166CrossRefGoogle Scholar
  24. Frick, A., Ferrara, K., & Newcombe, N. S. (2013). Using a touch screen paradigm to assess the development of mental rotation between 3 ½ and 5 ½ years of age. Cognitive Processes, 14, 117–127.  https://doi.org/10.1007/s10339-012-0534-0CrossRefGoogle Scholar
  25. Fuchs, L. S., Schumacher, R. R., Long, J., Jordan, N., Gersten, R., Cirino, P. T., … Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 683–700.  https://doi.org/10.1037/a0032446CrossRefGoogle Scholar
  26. Fuchs, L. S., Schumacher, R. F., Sterba, S. K., Long, J., Namkung, J., Malone, A., … Changas, P. (2014). Does working memory moderate the effects of fraction intervention? An aptitude–treatment interaction. Journal of Educational Psychology, 106, 499–514.  https://doi.org/10.1037/a0034341CrossRefGoogle Scholar
  27. Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177–190.  https://doi.org/10.1037/0012/1649.40.2.177CrossRefGoogle Scholar
  28. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552.  https://doi.org/10.1037/a0025510CrossRefGoogle Scholar
  29. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241.  https://doi.org/10.1037/a0027433CrossRefGoogle Scholar
  30. Hamdan, N., & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology, 53(3), 587–596.  https://doi.org/10.1037/dev0000252CrossRefGoogle Scholar
  31. Harris, J., Hirsh-Pasek, K., & Newcombe, N. S. (2013). Understanding spatial transformations: Similarities and differences between mental rotation and mental folding. Cognitive Processing, 14(1), 105–115.CrossRefGoogle Scholar
  32. Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236–264. https://doi.org/ 10.1080/07370008.2017.1323902CrossRefGoogle Scholar
  33. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689.  https://doi.org/10.1037/0022-0663.91.4.684CrossRefGoogle Scholar
  34. Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations—A meta-analytic review. Educational Psychology Review, 22(3), 245–269.  https://doi.org/10.1007/s10648-010-9126-7CrossRefGoogle Scholar
  35. Hurst, M., & Cordes, S. (2016). Rational-number comparison across notation: Fractions, decimals, and whole numbers. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 281–293.  https://doi.org/10.1037/xhp0000140CrossRefGoogle Scholar
  36. Jitendra, A. K., Nelson, G., Pulles, S. M., Kiss, A. J., & Houseworth, J. (2016). Is mathematical representation of problems an evidence-based strategy for students with mathematical difficulties? Exceptional Children, 83(1), 8–25.  https://doi.org/10.1177/0014402915625062CrossRefGoogle Scholar
  37. Joram, E. (2003). Benchmarks as tools for developing measurement sense. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: 2003 yearbook (pp. 57–67). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  38. Kingsdorf, S., & Krawec, J. (2016). A broad look at the literature on math word problem-solving interventions for third graders. Cogent Education, 3(1), 1–12.  https://doi.org/10.1080/2331186X.2015.1135770CrossRefGoogle Scholar
  39. Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549–579.  https://doi.org/10.1080/15326900701399897CrossRefGoogle Scholar
  40. Kozhevnikov, M., & Thorton, R. (2006). Real-time data display, spatial visualization ability, and learning force and motion concepts. Journal of Science Education and Technology, 15(1), 111–132.  https://doi.org/10.1007/s10956-006-0361-0CrossRefGoogle Scholar
  41. Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516–531.  https://doi.org/10.1016/j.jecp.2009.03.009CrossRefGoogle Scholar
  42. Krawec, J. L. (2012). Problem representation and mathematical problem solving of students of varying math ability. Journal of Learning Disabilities, 4(2), 1–13.  https://doi.org/10.1177/0022219412436976CrossRefGoogle Scholar
  43. Laski, E. V., Casey, B. M., Qingyi, Y., Dulaney, A., Heyman, M., & Dearing, E. (2013). Spatial skills as a predictor of first grade girls’ use of higher-level arithmetic strategies. Learning and Individual Differences, 23, 123–130.  https://doi.org/10.1016/j.lindif.2012.08.001CrossRefGoogle Scholar
  44. LeFevre, J., Fast, L., Skwarchuk, S., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81, 1753–1757.  https://doi.org/10.1111/j.1467-8624.2010.01508.xCrossRefGoogle Scholar
  45. LeFevre, J., Jimenez Lira, C., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S. L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4(641), 1–9.  https://doi.org/10.3389/fpsyg.2013.00641CrossRefGoogle Scholar
  46. Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children’s learning of multiplication. Journal of Experimental Psychology: General, 124(1), 83–97.  https://doi.org/10.1037/0096-3445.124.1.83CrossRefGoogle Scholar
  47. Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. WIREs Cognitive Science, 7, 127–155.  https://doi.org/10.1002/wcs.1380CrossRefGoogle Scholar
  48. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.  https://doi.org/10.1037/0012-1649.35.4.940CrossRefGoogle Scholar
  49. Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS One, 8(7), e70160.  https://doi.org/10.1371/journal.pone.0070160CrossRefGoogle Scholar
  50. Li, Y., & Geary, D. C. (2017). Children’s visuospatial memory predicts mathematics achievement through early adolescence. PLoS One, 12(2), e0172046.  https://doi.org/10.1371/journal.pone.0172046CrossRefGoogle Scholar
  51. Mix, K. S. (2010). Spatial tools for mathematical thought. In K. S. Mix, L. B. Smith, & M. Gasser (Eds.), The spatial foundations of language and cognition. New York: Oxford University Press.Google Scholar
  52. Mix, K. S., & Cheng, U. L. (2012). The relation between space and math: Developmental and educational implications. In J. B. Benson (Ed.), Advances in child development and behavior (Vol. 42, pp. 199–243). Waltham, MA: Academic Press.Google Scholar
  53. Mix, K. S., Levine, S. C., Cheng, Y., Young, C., Hambrick, D. Z., … Konstantopolous, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206–1227.CrossRefGoogle Scholar
  54. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621–640.  https://doi.org/10.1037/0096-3445.130.4.621CrossRefGoogle Scholar
  55. Moss, J., Bruce, C. D., Caswell, B., Flynn, T., & Hawes, Z. (2016). Taking shape: Activities to develop geometric and spatial thinking grades k-2. Toronto, ON, Canada: Pearson, Canada.Google Scholar
  56. Nath, S., & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32, 73–80.  https://doi.org/10.1016/j.learninstruc.2014.01.006CrossRefGoogle Scholar
  57. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  58. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2011). Common Core State Standards: Preparing America’s Students for College and Career. Retrieved from http://www.corestandards.org/.
  59. Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36, 1227–1238.  https://doi.org/10.1037/a0018170CrossRefGoogle Scholar
  60. Shen, C., Vasilyeva, M., & Laski, E. V. (2016). Here, but not there: Cross-national variability of gender effects in arithmetic. Journal of Experimental Child Psychology, 146, 50–65.  https://doi.org/10.1016/j.jecp.2016.01.016CrossRefGoogle Scholar
  61. Shaw, J., & Pucket-Cliatt, M. (1989). Developing measurement sense. In P. Trafton & A. Schule (Eds.), New directions for elementary school mathematics: 1989 yearbook (pp. 149–155). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  62. Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. Journal of Experimental Psychology: General, 116(3), 250–264.  https://doi.org/10.1037/0096-3445.116.3.250CrossRefGoogle Scholar
  63. Siegler, R. S. (2005). Children’s learning. American Psychologist, 60(8), 769–778.  https://doi.org/10.1037/0003-066X.60.8.769CrossRefGoogle Scholar
  64. Siegler, R. S. (2007). Cognitive variability. Developmental Science, 10(1), 104–109.  https://doi.org/10.1111/j.1467-7687.2007.00571.xCrossRefGoogle Scholar
  65. Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691–697.  https://doi.org/10.1177/0956797612440101CrossRefGoogle Scholar
  66. Siegler, R. S., & Shrager, J. (1984). A model of strategy choice. In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum.Google Scholar
  67. Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62, 273–296.  https://doi.org/10.1016/j.cogpsych.2011.03.001CrossRefGoogle Scholar
  68. TERC. (2008). Investigations in number, data, and space (2nd ed.). Boston, MA: Pearson Education.Google Scholar
  69. Tzuriel, D., & Egozi, G. (2010). Gender differences in spatial ability of young children: The effects of training and processing strategies. Child Development, 81(5), 1417–1430.  https://doi.org/10.1111/j.1467-8624.2010.01482.xCrossRefGoogle Scholar
  70. Torbeyns, J., Verschaffel, L., & Ghesquière, P. (2005). Simple addition strategies in a first-grade class with multiple strategies. Cognition and Instruction, 23(1), 1–21.  https://doi.org/10.1207/s1532690xci2301_1CrossRefGoogle Scholar
  71. University of Chicago School Mathematics Project. (2007). Everyday math (3rd ed.). Boston, MA: McGraw-Hill Education.Google Scholar
  72. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.CrossRefGoogle Scholar
  73. van Garderen, M. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39, 496–506.  https://doi.org/10.1177/00222194060390060201CrossRefGoogle Scholar
  74. Van Helsing (2007, August 7). Bicylinder Steinmetz solid.gif. Retrieved from https://commons.wikimedia.org/wiki/File:Bicylinder_Steinmetz_solid.gif
  75. Vasilyeva, M., Laski, E., & Shen, C. (2015). Computational fluency and strategy choice predict individual and cross-national differences in complex arithmetic. Developmental Psychology, 51(1), 1489–1500.  https://doi.org/10.1037/dev0000045CrossRefGoogle Scholar
  76. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85(3), 1062–1076.  https://doi.org/10.1111/cdev.12165CrossRefGoogle Scholar
  77. Voyer, D., & Hou, J. (2006). Type of items and the magnitude of gender differences on the Mental Rotations Test. Canadian Journal of Experimental Psychology, 60(2), 91–100.  https://doi.org/10.1037/cjep2006010CrossRefGoogle Scholar
  78. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.  https://doi.org/10.1037/a0016127CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Lynch School of EducationBoston CollegeBostonUSA
  2. 2.College of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations