Advertisement

How Much as Compared to What: Relative Magnitude as a Key Idea in Mathematics Cognition

  • Jamie Jirout
  • Nora S. Newcombe
Chapter
Part of the Research in Mathematics Education book series (RME)

Abstract

Most topics beyond basic arithmetic require relative magnitude reasoning. This chapter describes the link between relative magnitude reasoning and spatial scaling, a specific type of spatial thinking. We discuss use of the number line, proportional reasoning, and fractions. Consideration of the relational reasoning involved in mathematics can advance our understanding of its relation to spatial skills, and has implications for mathematics instruction, such as using spatial reasoning interventions in developing effective methods for supporting relative magnitude understanding. We review evidence that interventions can be successful in promoting better relative magnitude understanding and associated spatial-relational reasoning, and suggest that education considers ways of including relative magnitude learning, along with more traditional whole-number operations, in early educational efforts.

Keywords

Spatial scaling Spatial learning Spatial development Spatial visualization Scale Spatial representations Representations Diagrams Spatial-relational Relative magnitude Absolute magnitude Magnitude reasoning Number line estimation Proportional reasoning Fractions Symbolic understanding Benchmark strategy Manipulatives Interventions Spatial play 

References

  1. Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125–135.CrossRefGoogle Scholar
  2. Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247–253.CrossRefGoogle Scholar
  3. Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3= 2/6= 3/9= 4/12? Journal of Experimental Child Psychology, 111, 516–533.CrossRefGoogle Scholar
  4. Boyer, T. W., & Levine, S. C. (2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615.CrossRefGoogle Scholar
  5. Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: where young children go wrong. Developmental Psychology, 44(5), 1478.CrossRefGoogle Scholar
  6. Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380.CrossRefGoogle Scholar
  7. Casey, B., Erkut, S., Ceder, I., & Young, J. M. (2008). Use of a storytelling context to improve girls’ and boys’ geometry skills in kindergarten. Journal of Applied Developmental Psychology, 29(1), 29–48.CrossRefGoogle Scholar
  8. Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26, 269–309.CrossRefGoogle Scholar
  9. Common Core State Standards Initiative. (2010). Common core state standards for mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers. Retrieved from http://www.corestandards.org/the-standards/mathematics.
  10. Davies, C., & Uttal, D. H. (2007). Map use and the development of spatial cognition. In J. Plumert & J. Spencer (Eds.), The emerging Spatial Mind (pp. 219–247). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  11. DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 1556–1557.CrossRefGoogle Scholar
  12. DeWolf, M., & Vosniadou, S. (2011, January). The whole number bias in fraction magnitude comparisons with adults. In Proceedings of the annual meeting of the cognitive science society (Vol. 33, No. 33).Google Scholar
  13. Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5-to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 1–17.CrossRefGoogle Scholar
  14. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.  https://doi.org/10.1016/j.jecp.2014.01.013CrossRefGoogle Scholar
  15. Fazio, L. K., Kennedy, C. A., & Siegler, R. S. (2016). Improving children’s knowledge of fraction magnitudes. PLoS One, 11(10), e0165243.  https://doi.org/10.1371/journal.pone.0165243CrossRefGoogle Scholar
  16. Fisher, K. R., Hirsh-Pasek, K., Newcombe, N., & Golinkoff, R. M. (2013). Taking shape: Supporting preschoolers’ acquisition of geometric knowledge through guided play. Child Development, 84, 1872–1878.CrossRefGoogle Scholar
  17. Frick, A., & Newcombe, N. S. (2012). Getting the big picture: Development of spatial scaling abilities. Cognitive Development, 27, 270–282.CrossRefGoogle Scholar
  18. Fuchs, L. S., Malone, A. S., Schumacher, R. F., Namkung, J., Hamlett, C. L., Jordan, N. C., … Changas, P. (2016). Supported self-explaining during fraction intervention. Journal of Educational Psychology, 108(4), 493.CrossRefGoogle Scholar
  19. Garcia Garcia, G., & Cox, R. (2010). “Graph-as-picture” in Misconceptions in young students. In A. K. Goel, M. Jamnik, & N. H. Narayanan (Eds.), Diagrammatic representation and inference. Diagrams 2010. Lecture notes in computer science (pp. 310–312). Berlin: Springer.Google Scholar
  20. Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59, 47–59.CrossRefGoogle Scholar
  21. Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability. Austin, TX: PRO-ED.Google Scholar
  22. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229.CrossRefGoogle Scholar
  23. Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27(2), 115–147.CrossRefGoogle Scholar
  24. Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393–398.CrossRefGoogle Scholar
  25. Jirout, J., & Newcombe, N. S. (2014). Mazes and maps: Can young children find their way? Mind, Brain, and Education, 8(2), 89–96.CrossRefGoogle Scholar
  26. Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills evidence from a large, representative US sample. Psychological Science, 26(3), 302–310.CrossRefGoogle Scholar
  27. Ketterlin-Geller, L. R., Gifford, D. B., & Perry, L. (2015). Measuring middle school students’ algebra readiness: Examining validity evidence for three experimental measures. Assessment for Effective Intervention, 41(1), 28–40.CrossRefGoogle Scholar
  28. Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. Developmental Psychology, 50(3), 853–864.CrossRefGoogle Scholar
  29. Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: A predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48, 530–542.CrossRefGoogle Scholar
  30. Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201–221.  https://doi.org/10.1016/j.dr.2015.07.008CrossRefGoogle Scholar
  31. Lourenco, S. F., & Longo, M. R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. Brannon (Eds.), Space, time, and number in the brain: Searching for the foundations of mathematical thought (pp. 225–244). Waltham, MA: Academic Press.CrossRefGoogle Scholar
  32. Mix, K. S. (2010). Spatial tools for mathematical thought. Space and language, 41-66. In K. S. Mix, L. B. Smith, & M. Gasser (Eds.), The spatial foundations of cognition and language: Thinking through space (no. 4). Oxford: Oxford University Press.Google Scholar
  33. Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35, 164–174.CrossRefGoogle Scholar
  34. Möhring, W., Newcombe, N. S., & Frick, A. (2014). Zooming in on spatial scaling: Preschool children and adults use mental transformations to scale spaces. Developmental Psychology, 50(5), 1614–1619.CrossRefGoogle Scholar
  35. Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016a). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213–220.CrossRefGoogle Scholar
  36. Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016b). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67–84.CrossRefGoogle Scholar
  37. National Council of Teachers of Mathematics. (2010). Principles and standards for school mathematics. Reston, VA: Author.Google Scholar
  38. National Mathematics Advisory Panel (NMAP). (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education.Google Scholar
  39. National Research Council. (2009). Mathematics Learning in Early Childhood. Washington, DC: The National Academic Press.Google Scholar
  40. Negan, J., & Sarnecka, B. W. (2014). Is there really a link between exact-number knowledge and approximate number system acuity in young children? British Journal of Developmental Psychology, 33(1), 92–105.CrossRefGoogle Scholar
  41. Newcombe, N. S., Frick, A., & Möhring, W. (2018). How big is many? Development of spatial and numerical magnitude understanding. In A. Henik & W. Fias (Eds.), Heterogeneity of function in numerical cognition. Academic.Google Scholar
  42. Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and spatial reasoning. Cambridge, MA: MIT Press.Google Scholar
  43. Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. WIREs in Cognitive Science, 6(6), 491–505.CrossRefGoogle Scholar
  44. Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Dordrecht: Springer.Google Scholar
  45. Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves mathematics performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293.CrossRefGoogle Scholar
  46. Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133, 188–200.CrossRefGoogle Scholar
  47. Peeters, D., Verschaffel, L., & Luwel, K. (2017). Benchmark-based strategies in whole number line estimation. British Journal of Psychology, 108, 668–686.  https://doi.org/10.1111/bjop.12233CrossRefGoogle Scholar
  48. Piaget, J. (1952). The child’s conception of number. New York: Norton.Google Scholar
  49. Piaget, J., & Inhelder, B. (1956). The child’s conception of space. New York: Humanities Press.Google Scholar
  50. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394.CrossRefGoogle Scholar
  51. Ramani, G. B., & Siegler, R. S. (2014). How informal learning activities can promote children's numerical knowledge. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of mathematical cognition. New York: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199642342.013.012CrossRefGoogle Scholar
  52. Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104, 661–672.CrossRefGoogle Scholar
  53. Resnick, I., Davatzes, A., Newcombe, N. S., & Shipley, T. F. (2017). Using relational reasoning to learn about scientific phenomena at unfamiliar scales. Educational Psychology Review, 29(1), 11–25.CrossRefGoogle Scholar
  54. Sandberg, E., Huttenlocher, J., & Newcombe, N. (1996). The development of hierarchical representation of two-dimensional space. Child Development, 67, 721–739.CrossRefGoogle Scholar
  55. Scalise, N. R., Daubert, E. N., & Ramani, G. B. (2017, April). Short- and Long-term effects of playing card games on low-income children’s early mathematics skills. Paper presented at the biennial meeting of the Society for Research in Child Development, Austin, TX.Google Scholar
  56. Schneider, M., Heine, A., Thaler, V., Torbeyns, J., de Smedt, B., Verschaffel, L., … Stern, E. (2008). A validation of eye movements as a measure of elementary school children’s developing number sense. Cognitive Development, 23(3), 409–422.CrossRefGoogle Scholar
  57. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444.CrossRefGoogle Scholar
  58. Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Reviews in Psychology, 68, 187–213.  https://doi.org/10.1146/annurev-psych-010416-044101CrossRefGoogle Scholar
  59. Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346–351.CrossRefGoogle Scholar
  60. Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.CrossRefGoogle Scholar
  61. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560.CrossRefGoogle Scholar
  62. Singer-Freeman, K. E., & Goswamani, U. (2001). Does half a pizza equal half a box of chocolates? Proportional matching in an analogy task. Cognitive Development, 16, 811–829.CrossRefGoogle Scholar
  63. Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142(1), 193–208.CrossRefGoogle Scholar
  64. Spinillo, A. G., & Bryant, P. (1991). Children's proportional judgments: The importance of “half”. Child Development, 62(3), 427–440.CrossRefGoogle Scholar
  65. Szűcs, D., & Myers, T. (2017). A critical analysis of design, facts, bias, and inference in the approximate number system training literature: A systematic review. Trends in Neuroscience and Education, 6, 187–203.CrossRefGoogle Scholar
  66. Uttal, D. H. (2000). Seeing the big picture: Map use and the development of spatial cognition. Developmental Science, 3, 247–286.CrossRefGoogle Scholar
  67. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402.CrossRefGoogle Scholar
  68. Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: A developmental perspective. In Visualization: Theory and practice in science education (pp. 53–72). Dordrecht: Springer.CrossRefGoogle Scholar
  69. Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children's understanding of fractions. Child Development, 85(4), 1461–1476.CrossRefGoogle Scholar
  70. Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., … & Ogbuehi, P. (2012). Improving Mathematical Problem Solving in Grades 4 through 8. IES Practice Guide. NCEE 2012-4055. What Works Clearinghouse.Google Scholar
  71. Wynn, K. (1990). Children’s Understanding of Counting. Cognition, 36(2), 155–193.CrossRefGoogle Scholar
  72. Ye, A., Resnick, I., Hansen, N., Rodriguez, J., Rinne, L., & Jordan, N. C. (2016). Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge. Journal of Experimental Child Psychology, 152, 242–263.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Curry School of EducationUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of PsychologyTemple UniversityPhiladelphiaUSA

Personalised recommendations