Biometric Security and Internet of Things (IoT)

  • Mohammad S. Obaidat
  • Soumya Prakash Rana
  • Tanmoy Maitra
  • Debasis Giri
  • Subrata Dutta


The human-to-machine and human-to-human communications are transforming to machine-to-machine communications by which several decision-making systems can be built. When different Internet-enabled smart devices interact with each other to achieve a goal (application depended), then a network is formed in which different sophisticated technologies will integrate to each other to form Internet of Things (IoT). It encompasses the vast amount of diverse smart devices, which collaborate with each other to achieve different smart applications like smart cities, connected cars, automated agriculture, and so on. Through radio-frequency identification (RFID), wireless, mobile, and sensor technologies make IoT feasible, but it suffers from many challenges like scalability, security, and heterogeneity problems. Out of many challenges, security is one of the primary concerns in IoT. Without proper security and privacy, the business model of IoT will not succeed. This chapter discusses the secure solutions for IoT using biometric features of users as well as end users. The chapter will demonstrate that biometric security is most feasible, reliable, and efficient with respect to other existing security arrangements.


  1. 1.
    M.S. Obaidat, P. Nicopolitidis, Smart Cites and Homes: Key Enabling Technologies (Elsevier, 2016)Google Scholar
  2. 2.
    M.S. Obaidat, S. Misra, Principles of Wireless Sensor Networks (Cambridge University Press, 2014)Google Scholar
  3. 3.
    M.S. Obaidat, N. Boudriga, Security of e-Systems and Computer Networks (Cambridge University Press, 2007)Google Scholar
  4. 4.
    G.I. Davida, Y. Frankel, B.J. Matt, On enabling secure applications through off-line biometric identification, in Proceedings of IEEE Symposium on Security and Privacy (Cat. No.98CB36186), 1998, pp. 148–157Google Scholar
  5. 5.
    A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Hansen, P. Berlich, J. Camenisch, S. Clauß, A. Pfitzmann, M. Waidner, Privacy-enhancing identity management. Inf. Secur. Tech. Rep. 9(1), 35–44 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Jude, IBM: Working towards a smarter connected home (2014),
  8. 8.
    L. Jiang, D.-Y. Liu, B. Yang, Smart home research, in Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), vol. 2, 2004, pp. 659–663Google Scholar
  9. 9.
    N. Bui, M. Zorzi, Health care applications: A solution based on the internet of things, in Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2011, pp. 131:1–131:5Google Scholar
  10. 10.
    A.-M. Rahmani, N.K. Thanigaivelan, T.N. Gia, J. Granados, B. Negash, P. Liljeberg, H. Tenhunen, Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems, in Consumer Communications and Networking Conference (CCNC), 2015 12th Annual IEEE, 2015, pp. 826–834Google Scholar
  11. 11.
    A.M. Vilamovska, E. Hattziandreu, R. Schindler, C. Van Oranje, H. De Vries, J. Krapelse, RFID application in healthcare–scoping and identifying areas for RFID deployment in healthcare delivery. RAND Europe, February 2009Google Scholar
  12. 12.
    L. Lei-hong, H. Yue-shan, W. Xiao-ming, A community health service architecture based on the internet of things on health-care, in World Congress on Medical Physics and Biomedical Engineering, May 26–31, 2012, Beijing, China, 2013, pp. 1317–1320Google Scholar
  13. 13.
    A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, G. Schreier, The internet of things for ambient assisted living, in Information Technology: New Generations (ITNG), 2010 Seventh International Conference on, 2010, pp. 804–809Google Scholar
  14. 14.
    G. Acampora, D.J. Cook, P. Rashidi, A.V. Vasilakos, A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013)CrossRefGoogle Scholar
  15. 15.
    M.S. Shahamabadi, B.B.M. Ali, P. Varahram, A.J. Jara, A network mobility solution based on 6LoWPAN hospital wireless sensor network (NEMO-HWSN), in Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013 Seventh International Conference on, 2013, pp. 433–438Google Scholar
  16. 16.
    S.M.R. Islam, D. Kwak, M.D.H. Kabir, M. Hossain, K.-S. Kwak, The internet of things for health care: A comprehensive survey. IEEE Access 3, 678–708 (2015)CrossRefGoogle Scholar
  17. 17.
    R.S.H. Istepanian, S. Hu, N.Y. Philip, A. Sungoor, The potential of Internet of m-health things “m-IoT” for non-invasive glucose level sensing, in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 5264–5266Google Scholar
  18. 18.
    Z.L. In, Patient body temperature monitoring system and device based on internet of things. Chin. Pat. 103, 577–688 (2014)Google Scholar
  19. 19.
    H.A. Khattak, M. Ruta, E. Di Sciascio, CoAP-based healthcare sensor networks: A survey, in Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, 2014, pp. 499–503Google Scholar
  20. 20.
    E.C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, S.N. Patel, SpiroSmart: Using a microphone to measure lung function on a mobile phone, in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, 2012, pp. 280–289Google Scholar
  21. 21.
    P.K. Dash, Electrocardiogram monitoring. Indian J. Anaesth 46(4), 251–260 (2002)MathSciNetGoogle Scholar
  22. 22.
    L. Yang, Y. Ge, W. Li, W. Rao, W. Shen, A home mobile healthcare system for wheelchair users, in Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 I.E. 18th International Conference on, 2014, pp. 609–614Google Scholar
  23. 23.
  24. 24.
    Awareness Day 2014 Activities by Program Type, National Children’s Mental Health Awareness Day (May 2014),
  25. 25.
    M. Vazquez-Briseno, C. Navarro-Cota, J.I. Nieto-Hipolito, E. Jimenez-Garcia, J.D. Sanchez-Lopez, A proposal for using the internet of things concept to increase children’s health awareness, in Electrical Communications and Computers (CONIELECOMP), 2012 22nd International Conference on, 2012, pp. 168–172Google Scholar
  26. 26.
    G. Zhang, C. Li, Y. Zhang, C. Xing, J. Yang, SemanMedical: a kind of semantic medical monitoring system model based on the IoT sensors, in e-Health Networking, Applications and Services (Healthcom), 2012 I.E. 14th International Conference on, 2012, pp. 238–243Google Scholar
  27. 27.
    D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  29. 29.
    T. Nam, T.A. Pardo, Conceptualizing smart city with dimensions of technology, people, and institutions, in Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, 2011, pp. 282–291Google Scholar
  30. 30.
    T. Bakıcı, E. Almirall, J. Wareham, A smart city initiative: The case of Barcelona. J. Knowl. Econ. 4(2), 135–148 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Wang, W. He, A reservation-based smart parking system, in Computer Communications Workshops (INFOCOM WKSHPS), 2011 I.E. Conference on, 2011, pp. 690–695Google Scholar
  32. 32.
    D. Bonino, M.T.D. Alizo, A. Alapetite, T. Gilbert, M. Axling, H. Udsen, J.A.C. Soto, M. Spirito, Almanac: internet of things for smart cities, in Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, 2015, pp. 309–316Google Scholar
  33. 33.
    M. Yun, B. Yuxin, Research on the architecture and key technology of internet of things (IoT) applied on smart grid, in Advances in Energy Engineering (ICAEE), 2010 International Conference on, 2010, pp. 69–72Google Scholar
  34. 34.
    E. Qin, Y. Long, C. Zhang, L. Huang, Cloud computing and the internet of things: Technology innovation in automobile service, in International Conference on Human Interface and the Management of Information, 2013, pp. 173–180Google Scholar
  35. 35.
    Y. Zhang, B. Chen, X. Lu, Intelligent monitoring system on refrigerator trucks based on the internet of things, in International Conference on Wireless Communications and Applications, 2011, pp. 201–206Google Scholar
  36. 36.
    L. Atzori, A. Iera, G. Morabito, SIoT: Giving a social structure to the internet of things. IEEE Commun. Lett. 15(11), 1193–1195 (2011)CrossRefGoogle Scholar
  37. 37.
    L. Atzori, A. Iera, G. Morabito, M. Nitti, The social internet of things (siot)–when social networks meet the internet of things: Concept, architecture and network characterization. Comput. Netw. 56(16), 3594–3608 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Kleinberg, The convergence of social and technological networks. Commun. ACM 51(11), 66–72 (2008)CrossRefGoogle Scholar
  39. 39.
    P. Semmelhack, Social Machines: How to Develop Connected Products that Change Customers’ Lives (Wiley, 2013)Google Scholar
  40. 40.
    Y. Bo, H. Wang, The application of cloud computing and the internet of things in agriculture and forestry, in Service Sciences (IJCSS), 2011 International Joint Conference on, 2011, pp. 168–172Google Scholar
  41. 41.
    J. Zhao, J. Zhang, Y. Feng, J. Guo, The study and application of the IOT technology in agriculture, in Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on, vol. 2, 2010, pp. 462–465Google Scholar
  42. 42.
    A. Giri, S. Dutta, S. Neogy, Enabling agricultural automation to optimize utilization of water, fertilizer and insecticides by implementing internet of things (IoT), in 2016 International Conference on Information Technology (InCITe) – The Next Generation IT Summit on the Theme – Internet of Things: Connect Your Worlds, 2016, pp. 125–131Google Scholar
  43. 43.
    T. Kelesidis, I. Kelesidis, P.I. Rafailidis, M.E. Falagas, Counterfeit or substandard antimicrobial drugs: A review of the scientific evidence. J. Antimicrob. Chemother. 60(2), 214–236 (2007)CrossRefGoogle Scholar
  44. 44.
    A.J. Jara, A.F. Alcolea, M.A. Zamora, A.F.G. Skarmeta, M. Alsaedy, Drugs interaction checker based on IoT, in 2010 Internet of Things (IOT), 2010, pp. 1–8Google Scholar
  45. 45.
    L. Toms, 5 Common cyber attacks in the IoT-threat alert on a grand scale, in Global Sign (GMO Internet Group, 2016)Google Scholar
  46. 46.
    N.K. Ratha, J.H. Connell, R.M. Bolle, Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)CrossRefGoogle Scholar
  47. 47.
    M. Abomhara, Cyber security and the internet of things: Vulnerabilities, threats, intruders and attacks. J. Cyber Secur. Mobility 4(1), 65–88 (2015)CrossRefGoogle Scholar
  48. 48.
    Hewlett Packard, HP study reveals 70 percent of internet of things devices vulnerable to attack, July 2014Google Scholar
  49. 49.
    T. Heer, O. Garcia-Morchon, R. Hummen, S.L. Keoh, S.S. Kumar, K. Wehrle, Security challenges in the IP-based internet of things. Wirel. Pers. Commun. 61(3), 527–542 (2011)CrossRefGoogle Scholar
  50. 50.
    S. Cirani, G. Ferrari, L. Veltri, Enforcing security mechanisms in the IP-based internet of things: An algorithmic overview. Algorithms 6(2), 197–226 (2013)CrossRefGoogle Scholar
  51. 51.
    H. Sundmaeker, P. Guillemin, P. Friess, S. Woelfflé, Vision and challenges for realizing the internet of things. CERP-IoT, Eur. Comm. 3(3), 34–36 (2010)Google Scholar
  52. 52.
    A.K. Jain, S.Z. Li, Handbook of Face Recognition (Springer, New York, 2011)zbMATHGoogle Scholar
  53. 53.
    C. Ding, C. Xu, D. Tao, Multi-task pose-invariant face recognition. IEEE Trans. Image Process. 24(3), 980–993 (2015)MathSciNetCrossRefGoogle Scholar
  54. 54.
    L.B. Rowden, A.K. Jain, Longitudinal study of automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 148–162 (2018)CrossRefGoogle Scholar
  55. 55.
    R. Teixeira, N. Leite, A new framework for quality assessment of high-resolution fingerprint images. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 1905–1917 (2017)CrossRefGoogle Scholar
  56. 56.
    J. Daugman, How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  57. 57.
    L. Zhang, Y. Shen, H. Li, J. Lu, 3D palm print identification using block-wise features and collaborative representation. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1730–1736 (2015)CrossRefGoogle Scholar
  58. 58.
    L. Zhang, L. Li, A. Yang, Y. Shen, M. Yang, Towards contactless palm print recognition: A novel device, a new benchmark, and a collaborative representation based identification approach. Pattern Recogn. 69, 199–212 (2017)CrossRefGoogle Scholar
  59. 59.
    A. Tkach, M. Pauly, A. Tagliasacchi, Sphere-meshes for real-time hand modeling and tracking. ACM Trans. Graph. 35(6), 222 (2016)CrossRefGoogle Scholar
  60. 60.
    S. Sharma, S.R. Dubey, S.K. Singh, R. Saxena, R.K. Singh, Identity verification using shape and geometry of human hands. Expert Syst. Appl. 42(2), 821–832 (2015)CrossRefGoogle Scholar
  61. 61.
    J.G. Rodriguez, P. Rose, D. Ramos, D.T. Toledano, J.O. Garcia, Emulating DNA: Rigorous quantification of evidential weight in transparent and testable forensic speaker recognition. IEEE Trans. Audio Speech Lang. Process. 15(7), 2104–2115 (2007)CrossRefGoogle Scholar
  62. 62.
    A. Kumar, K.V. Prathyusha, Personal authentication using hand vein triangulation and knuckle shape. IEEE Trans. Image Process. 18(9), 2127–2136 (2009)MathSciNetCrossRefGoogle Scholar
  63. 63.
    M.S. Obaidat, B. Sadoun, Verification of computer users using keystroke dynamics. IEEE Trans. Syst. Man Cybern. B 27(2), 261–269 (1997)CrossRefGoogle Scholar
  64. 64.
    A.M.D.L. Herran, B.G. Zapirain, A.M. Zorrilla, Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14, 3362–3394 (2014)CrossRefGoogle Scholar
  65. 65.
    A. Fischer, R. Plamondon, Signature verification based on the kinematic theory of rapid human movements. IEEE Trans. Hum. Mach. Syst. 47(2), 169–180 (2017)CrossRefGoogle Scholar
  66. 66.
    D.P. Jarrett, E.A.P. Habets, P.A. Naylor, Theory and Applications of Spherical Microphone Array Processing (Springer, 2017), pp. 1–10Google Scholar
  67. 67.
    K. Ali, A.X. Liu, W. Wang, M. Shahzad, Recognizing keystrokes using Wi-Fi devices. IEEE J. Sel. Areas Commun. 35(5), 1175–1190 (2017)CrossRefGoogle Scholar
  68. 68.
    R. de Luis-Garcıa, C. Alberola-López, O. Aghzout, J. Ruiz-Alzola, Biometric identification systems. Signal Process. 83(12), 2539–2557 (2003)CrossRefGoogle Scholar
  69. 69.
    M. Faundez-Zanuy, Biometric security technology, in Encyclopedia of Artificial Intelligence (IGI Global, 2009), pp. 262–269Google Scholar
  70. 70.
    Y. Zhen, X. Li, Q. Ou, L. Zeng, Internet of things and smart grid. Digit. Commun. 39(5) (2012)Google Scholar
  71. 71.
    A. Kulkarni, S. Sathe, Healthcare applications of the internet of things: A review. Int. J. Comput. Sci. Inf. Technol. 5(5), 6229–6232 (2014)Google Scholar
  72. 72.
    A. Riahi, E. Natalizio, Y. Challal, N. Mitton, A. Iera, A systemic and cognitive approach for IoT security, in Computing, Networking and Communications (ICNC), 2014 International Conference on, 2014, pp. 183–188Google Scholar
  73. 73.
    A.K. Jain, A. Ross, S. Prabhakar, An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  74. 74.
    W. Hwang, H. Wang, H. Kim, S.C. Kee, J. Kim, Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation. IEEE Trans. Image Process. 20(4), 1152–1165 (2011)MathSciNetCrossRefGoogle Scholar
  75. 75.
    S.D. Choudhury, T. Tjahjadi, Silhouette-based gait recognition using procrustes shape analysis and elliptic Fourier descriptors. Pattern Recogn. 45(9), 3414–3426 (2012)CrossRefGoogle Scholar
  76. 76.
    D.C. He, L. Wang, Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28, 509–512 (1990)CrossRefGoogle Scholar
  77. 77.
    U. Park, R.R. Jillela, A. Ross, A.K. Jain, Periocular biometrics in the visible spectrum. IEEE Trans. Inf. Forensics Secur. 6(1), 96–106 (2011)CrossRefGoogle Scholar
  78. 78.
    Z. Guo, L. Zhang, D. Zhang, X. Mou, Hierarchical multi scale LBP for face and palmprint recognition, in Proceedings of 17th IEEE International Conference on Image Processing (ICIP), September 2010, pp. 4521–4524Google Scholar
  79. 79.
    C. Gottschlich, Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement. IEEE Trans. Image Process. 21(4), 2220–2227 (2012)MathSciNetCrossRefGoogle Scholar
  80. 80.
    S. Xie, S. Shan, X. Chen, J. Chen, Fusing local patterns of Gabor magnitude and phase for face recognition. IEEE Trans. Image Process. 19(5), 1349–1361 (2010)MathSciNetCrossRefGoogle Scholar
  81. 81.
    V.F. Zernike, Diffraction theory of the cutting process and its improved form, the phase contrast method. Physica 1(7–12), 689–704 (1934)CrossRefGoogle Scholar
  82. 82.
    C.W. Tan, A. Kumar, Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans. Image Process. 21(9), 4068–4079 (2012)MathSciNetCrossRefGoogle Scholar
  83. 83.
    C.W. Tan, A. Kumar, Accurate iris recognition at a distance using stabilized iris encoding and Zernike moments phase features. IEEE Trans. Image Process. 23(9), 3962–3974 (2014)MathSciNetCrossRefGoogle Scholar
  84. 84.
    D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the IEEE International Conference on Computer Vision, vol. 2, Washington, DC, 1999, pp. 1150–1157Google Scholar
  85. 85.
    X. Wu, Y. Tang, W. Bu, Offline text-independent writer identification based on scale invariant feature transform. IEEE Trans. Inf. Forensics Secur. 9(3), 526–536 (2014)CrossRefGoogle Scholar
  86. 86.
    D. Smeets, J. Keustermans, D. Vandermeulen, P. Suetens, meshSIFT: Local surface features for 3D face recognition under expression variations and partial data. Comput. Vis. Image Underst. 117(2), 158–169 (2013)CrossRefGoogle Scholar
  87. 87.
    T. Maitra, D. Giri, An efficient biometric and password-based remote user authentication using smart card for telecare medical information systems in multi-server environment. J. Med. Syst. 38(12), 142 (2014)CrossRefGoogle Scholar
  88. 88.
    T. Maitra, M.S. Obaidat, R. Amin, S.K. Hafizul Islam, S.A. Chaudhry, D. Giri, A robust ElGamal-based password-authentication protocol using smart card for client-server communication. Int. J. Commun. Syst. 30(11), e3242 (2017)CrossRefGoogle Scholar
  89. 89.
    Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197 (2001).;

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad S. Obaidat
    • 2
    • 3
    • 4
    • 1
  • Soumya Prakash Rana
    • 5
  • Tanmoy Maitra
    • 6
  • Debasis Giri
    • 7
  • Subrata Dutta
    • 8
  1. 1.Fordham UniversityNew York CityUSA
  2. 2.ECE DepartmentNazarbayev UniversityAstanaKazakhstan
  3. 3.King Abdullah II School of Information Technology (KASIT), University of JordanAmmanJordan
  4. 4.University of Science and Technology Beijing (USTB)BeijingChina
  5. 5.Division of Electrical and Electronic EngineeringLondon South Bank UniversityLondonUK
  6. 6.School of Computer EngineeringKIIT UniversityBhubaneswarIndia
  7. 7.Department of Information TechnologyMaulana Abul Kalam Azad University of TechnologyNadiaIndia
  8. 8.Department of Computer Science and EngineeringNational Institute of Technology JamshedpurJamshdpurIndia

Personalised recommendations