Informational Efficiency and Endogenous Rational Bubbles

  • George A. Waters
Part of the Dynamic Modeling and Econometrics in Economics and Finance book series (DMEF, volume 24)


In a model where rational bubbles form and collapse endogenously, properly specified tests of return predictability have little power to reject deviations from the efficient markets model. A weighted replicator dynamic describes how agents switch between a forecast based on fundamentals, a rational bubble forecast, and a weighted average of the two. A significant portion of the population may adopt the rational bubble forecast, which is inconsistent with the efficient markets model but satisfies informational efficiency. Tests on simulated data show excess variance in the price and unpredictable returns.

JEL Classification

C22 C73 G12 D84 


  1. Abou, A., & Prat, G. (2000). Modelling stock price expectations: Lessons from microdata. In F. Gardes & G. Prat (Eds.), Price expectations in goods and financial markets (pp. 313–46). Cheltenham: Edward Elgar.Google Scholar
  2. Adam, K., Marcet, A., & Niccolini, J. P. (2016). Stock market volatility and learning. Journal of Finance, 71, 33–82.CrossRefGoogle Scholar
  3. Blanchard, O. (1979). Backward and forward solutions for economies with rational expectations. American Economic Review, 69(2), 114–118.Google Scholar
  4. Branch, W., & Evans, G. (2007). Model uncertainty and endogenous volatility. Review of Economic Dynamics, 10, 207–237.CrossRefGoogle Scholar
  5. Branch, W., & Evans, G. (2011). Learning about risk and return: A simple model of bubbles and crashes. American Economic Review: Macroeconomics, 3(1), 159–191.Google Scholar
  6. Brock, W. A., & Hommes, C. H. (1997). A rational route to randomness. Econometrica, 65(5), 1059–1095.CrossRefGoogle Scholar
  7. Brock, W. A., & Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 22, 1235–1274.CrossRefGoogle Scholar
  8. Campbell, J. Y., & Shiller, R. J. (1989). The dividend-price ratio and expectations of future dividends and discount factors. Review of Financial Studies 1(3), 195–228.CrossRefGoogle Scholar
  9. Campbell, J. Y., & Yogo, M. (2006). Efficient tests of stock return predictability. Journal of Financial Economics, 81(1), 27–60.CrossRefGoogle Scholar
  10. Cochrane, J. (2008). A dog that did not bark: a defense of return predictability. Review of Financial Studies, 21(4), 1533–1575.CrossRefGoogle Scholar
  11. DeLong, B., Schleifer, A., Summers, L. H., & Waldmann, R. J. (1991). The survival of noise traders in financial markets. Journal of Business, 64(1), 1–20.CrossRefGoogle Scholar
  12. Evans, G. (1991). Pitfalls in testing for explosive bubbles in asset prices. American Economic Review, 81(4), 922–930.Google Scholar
  13. Evans, G., & Honkapohja, S. (2011). Learning as a rational foundation for macroeconomics and finance, Bank of Finland Research Discussion Paper No. 8/2011.Google Scholar
  14. Evans, G., & Ramey, G. (1992). Expectation calculation and macroeconomic dynamics. American Economics Review, 82(1), 207–224.Google Scholar
  15. Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23–49.CrossRefGoogle Scholar
  16. Flavin, M. (1983). Excess volatility in the financial market: A reassessment of the empirical evidence. Journal of Political Economy, 91(6), 929–956.CrossRefGoogle Scholar
  17. Glassman, J., & Hassett, K. (1999). DOW 36,000. New York, NY: Three Rivers Press.Google Scholar
  18. Hofbauer, J., & Weibull, J. (1996). Evolutionary selection against dominated strategies. Journal of Economic Theory, 71, 558–573.CrossRefGoogle Scholar
  19. Hommes, C. H. (2001). Financial markets as nonlinear adaptive evolutionary systems. Quantitative Finance, 1, 149–167.CrossRefGoogle Scholar
  20. Hommes, C. H. (2006). Heterogeneous agent models in economics and finance. In L. Tesfatsion & K. I. Judd (Eds.), Handbook of computational economics. Agent-based computational economics, vol. 2. Amsterdam: Elsevier Science BV.Google Scholar
  21. Keynes, J. M. (1935). The general theory of employment, interest and money. New York, NY: Harcourt Brace.Google Scholar
  22. Lansing, K. (2010). Rational and near-rational bubbles without drift. Economic Journal, 120, 1149–1174.CrossRefGoogle Scholar
  23. LeBaron, B. (2012). Heterogeneous gain learning and the dynamics of asset prices. Journal of Economic Behavior and Organization, 83(3), 424–445.CrossRefGoogle Scholar
  24. LeBaron, B., Arthur, B., & Palmer, R. (1999). Time series properties of an artificial stock market. Journal of Economic Dynamics and Control, 23, 1487–1516.CrossRefGoogle Scholar
  25. LeRoy, S. F., & Parke, W. R. (1992). Stock price volatility: Tests based on the geometric random walk. American Economic Review, 82(4), 981–992.Google Scholar
  26. LeRoy, S. F., & Porter, R. D. (1981). The present value relation: Tests based on implied variance bounds. Econometrica, 49(3), 555–574.CrossRefGoogle Scholar
  27. Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial Economics, 74(1), 209–235.CrossRefGoogle Scholar
  28. Lundqvist, L., & Sargent, T. J. (2004). Recursive macroeconomics theory. Cambridge, MA: The MIT Press.Google Scholar
  29. Ohlson, J. A. (1977). Risk-aversion and the martingale property of stock prices: Comments. International Economic Review, 18(1), 229–235.CrossRefGoogle Scholar
  30. Parke, W. R., & Waters, G. A. (2007). An evolutionary game theory explanation of arch effects. Journal of Economic Dynamics and Control, 31(7), 2234–2262.CrossRefGoogle Scholar
  31. Parke, W. R., & Waters, G. A. (2014). On the evolutionary stability of rational expectations. Macroeconomic Dynamics, 18(7), 1581–1606.CrossRefGoogle Scholar
  32. Prat, G., & Uctum, R. (2011). Modelling oil price expectations: Evidence from survey data. The Quarterly Review of Economics and Finance, 51(3), 236–247.CrossRefGoogle Scholar
  33. Prat G., & Uctum, R. (2015). Expectation formation in the foreign exchange market : A time-varying heterogeneity approach using survey data. Applied Economics, 47(34–35), 3673–95.CrossRefGoogle Scholar
  34. Samuelson, L. (1997). Evolutionary games and equilibrium selection. Cambridge, MA: The MIT Press.Google Scholar
  35. Sandholm, W. (2011). Population games and evolutionary dynamics. Cambridge, MA: The MIT Press.Google Scholar
  36. Shiller, R. J. (1981). Do stock prices move too much to be justified to expected changes in dividends? American Economics Review, 71(3), 421–426.Google Scholar
  37. Shiller, R. J. (1990). The term structure of interest rates. In B. M. Friedman & F. H. Hahn (Eds.), The handbook of monetary economics. Amsterdam: Elsevier Science BV.Google Scholar
  38. Shiller, R. J. (2005). Irrational exuberance. Princeton, NJ: Princeton University Press.Google Scholar
  39. Waters, G. A. (2009). Chaos in the cobweb model with a new learning dynamic. Journal of Economic Dynamics and Control, 33(6), 1201–1216.CrossRefGoogle Scholar
  40. Weibull, J. (1998). Evolutionary game theory. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • George A. Waters
    • 1
  1. 1.Department of EconomicsIllinois State UniversityNormalUSA

Personalised recommendations