Advertisement

Mathematics Disorders

  • Ellen H. O’DonnellEmail author
Chapter
Part of the Current Clinical Psychiatry book series (CCPSY)

Abstract

The prevalence of math disorders is similar to that of developmental dyslexia and ADHD. However, there is no agreed-upon core cognitive deficit in mathematics disorder. In this chapter, subtypes of math disorders are outlined and explained based on developmental delays in skills such as number representation, language processing, working memory and executive functions, and spatial or nonverbal reasoning. Both typical and atypical developments of math skills are explained to help clinicians who work with children to recognize and flag the need to refer for additional testing. Identifying, via comprehensive neuropsychological assessment, the pattern of cognitive processing strengths and weaknesses that contribute to an individual’s underachievement in math provides the best path to implementing effective intervention. A number of common measures of math skills as well as of the cognitive skills that underlie math reasoning are listed and described. Finally, potential comorbidities of and interventions for math disorders are discussed and an illustrative case study presented.

Keywords

Math disorders Dyscalculia Math learning disability 

References

  1. 1.
    Alloway TP. Working memory, reading, and mathematical skills in children with developmental coordination disorder. J Exp Child Psychol. 2007;96(1):20–36.  https://doi.org/10.1016/j.jecp.2006.07.002.PubMedCrossRefGoogle Scholar
  2. 2.
    Alloway TP, Archibald L. Working memory and learning in children with developmental coordination disorder and specific language impairment. J Learn Disabil. 2008;41(3):251–62.  https://doi.org/10.1177/0022219408315815.PubMedCrossRefGoogle Scholar
  3. 3.
    Alloway TP, Temple KJ. A comparison of working memory skills and learning in children with developmental coordination disorder and moderate learning difficulties. Appl Cogn Psychol. 2007;21(4):473–87.  https://doi.org/10.1002/acp.1284.CrossRefGoogle Scholar
  4. 4.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  5. 5.
    Ashkenazi S, Rosenberg-Lee M, Metcalfe AW, Swigart AG, Menon V. Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia. 2013;51(11):2305–17.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bernstein BE. Mathematics learning disorder: practice essentials, background, epidemiology. Medscape. 2016. Retrieved 3/12/2017 from http://emedicine.medscape.com/article/915176-overview#a0199.
  7. 7.
    Boller F, Grafman J. Acalculia: historical development and current significance. Brain Cogn. 1983;2(3):205–23.  https://doi.org/10.1016/0278-2626(83)90010-6.PubMedCrossRefGoogle Scholar
  8. 8.
    Butterworth B. Foundational numerical capacities and the origins of dyscalculia. Trends Cogn Sci. 2010;14(12):534–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Dehaene S. Varieties of numerical abilities. Cognition. 1992;44(1–2):1–42.PubMedGoogle Scholar
  10. 10.
    Dehaene S, Cohen L. Towards an anatomical and functional model of number processing. Math Cogn. 1995;1:83–120.Google Scholar
  11. 11.
    Dehaene S, Cohen L. Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex J Devoted Study Nerv Syst Behav. 1997;33(2):219–50.CrossRefGoogle Scholar
  12. 12.
    Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol. 2003;20(3):487–506.PubMedCrossRefGoogle Scholar
  13. 13.
    DeSmedt B, Noel MP, Gilmore C, Ansari D. How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci Educ. 2013;2:48–55.CrossRefGoogle Scholar
  14. 14.
    Dickhauser O, Reinhard M-A. The effects of affective states on the formation of performance expectancies. Cognit Emot. 2008;22(8):1542–54.  https://doi.org/10.1080/02699930801906900.CrossRefGoogle Scholar
  15. 15.
    Docherty SJ, Davis OSP, Kovas Y, Meaburn EL, Dale PS, Petrill SA, Schalkwyk LC, Plomin R. A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes Brain Behav. 2010;9:234–47.  https://doi.org/10.1111/j.1601-183X.2009.00552.x.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Feifer SG. The neuropsychology of mathematics: an introduction to the FAM. Sparta: School Neuropsych Press, LLC; 2017.Google Scholar
  17. 17.
    Feigensohn L, Dahaene S, Spelke E. Core systems of number. Trends Cogn Sci. 2004;8(7):307–14.CrossRefGoogle Scholar
  18. 18.
    Fennema E, Romberg TA. In: Fennema E, Romberg TA, editors. Mathematics classrooms that promote understanding. Mahwah: Lawrence Erlbaum Associates Publishers; 1999.CrossRefGoogle Scholar
  19. 19.
    Fias W, Menon V, Szucs D. Multiple components of developmental dyscalculia. Trends Neurosci Educ. 2013;2:43–7.CrossRefGoogle Scholar
  20. 20.
    Fias W, Lammertyn J, Reynvoet B, Dupont P, Orban GA. Parietal representation of symbolic and nonsymbolic magnitude. J Cogn Neurosci. 2003;15(10):47–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Geary. Mathematics and learning disabilities. J Learn Disabil. 2004;37(1):4–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Gelman R. Counting in the preschooler: what does and does not develop. In: Siegler RS, editor. Children’s thinking: what develops? Hillsdale: Lawrence Erlbaum Associates, Inc; 1978. p. 213–41.Google Scholar
  23. 23.
    Gordon P. Numerical cognition without words: evidence from Amazonia. Sci Spec Issue Cogn Behav. 2004;306(5695):496–9.Google Scholar
  24. 24.
    Hale J, Alfonso V, Berninger V, Bracken B, Christo E, Clark M, Cohen AD, Decker S, Denckla M, Dumont R, Elliott C, Feifer S, Fiorello C, Flanagan D, Fletcher-Janzen E, Geary D, Gerber M, Gerner M, Goldstein S, Gregg N, Hagin R, Jaffe L, Kaufman A, Kaufman N, Keith T, Kline F, Kochhar-Bryant C, Lerner J, Marshall G, Mascolo J, Mather N, Mazzocco M, McCloskey G, McGrew K, Miller D, Miller J, Mostert M, Naglieri J, Ortiz S, Phelps L, Podhajski B, Reddy L, Reynolds C, Riccio C, Schrank F, Schultz E, Semrud-Clikeman M, Shaywitz S, Simon J, Silver L, Swanson L, Urso A, Wasserman T, Willis J, Wodrich D, Wright J, Yalof J. Critical issues in response-to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention. Learn Disabil Q. 2010;33:223–36.CrossRefGoogle Scholar
  25. 25.
    Hopko DR, Ashcraft MH, Gute J, Ruggiero KJ, Lewis C. Mathematics anxiety and working memory: support for the existence of a deficient inhibition mechanism. J Anxiety Disord. 1998;12(4):343–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaufman L, Kucian K, von Aster M. Development of the numerical brain. In: Dowker A, Cohen Kadosh R, editors. Oxford handbook of numerical cognition. Oxford: Oxford University Press; 2014.Google Scholar
  27. 27.
    Kellogg JS, Hopko DR, Ashcraft MH. The effects of time pressure on arithmetic performance. J Anxiety Disord. 1999;13(6):591–600.PubMedCrossRefGoogle Scholar
  28. 28.
    Kucien K, von Aster M. Developmental dyscalculia. Eur J Pediatr. 2015;174:1–13.  https://doi.org/10.10007/s00431-014-2455-7.CrossRefGoogle Scholar
  29. 29.
    Kucien K, Grond U, Rotzer S, Henzi B, Schonmann C, Plangger F, Gälli M, Martin E, von Aster M. Mental number line training in children with developmental dyscalculia. NeuroImage. 2011;57(3):782–95.CrossRefGoogle Scholar
  30. 30.
    Lindsay RL, Tomazic T, Levine MD, Accardo PJ. Attentional function as measured by a continuous performance task in children with dyscalculia. Dev Behav Pediatr. 2001;22(5):287–92.CrossRefGoogle Scholar
  31. 31.
    Mazzocco MM, Feigenson L, Halberda J. Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Dev. 2011;82(4):1224–37.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nicolson R, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Parsons S, Brynner J. Does numeracy matter more: national research and development centre for adult literacy and numeracy. London: Institute of Education; 2005.Google Scholar
  34. 34.
    Pica P, Lemer C, Izard V, Dehaene S. Exact and approximate arithmetic in an Amonian indigene group. Science. 2004;306(5695):499–503.PubMedCrossRefGoogle Scholar
  35. 35.
    Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Dehaene S, Zorzo M. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition. 2010;116:33–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Pieters S, Desoete A, Van Waelvelde H, Vanderswalmen R, Roeyers H. Mathematical problems in children with developmental coordination disorder. Res Dev Disabil. 2012;33:1128–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Rotzer S, Loenneker T, Kucian K, Martin E, Klaver P, von Aster M. Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia. 2009;47(13):2859–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Shalev RS, Auerbach J, Manor O, Gross-Tsur. Developmental dyscalculia: prevalence and prognosis. Eur Child Adolesc Psychiatry. 2000;9(2):II58.PubMedCrossRefGoogle Scholar
  39. 39.
    Shalev RS, Manor O, Kerem B, Ayali M, Badichi N, Friedlander Y, Gross-Tsur V. Developmental dyscalculia is a familial learning disability. J Learn Disabil. 2001;34(1):59–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Szucs D, Devine A, Soltesz F, Nobes A, Gabriel F. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex. 2013;49:2674–88.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Toll SWM, Van der Ven SHG, Kroesbergen EH, Van Luit JEH. Executive functions as predictors of math learning disabilities. J Learn Disabil. 2011;44(6):521–32.  https://doi.org/10.1177/0022219410387302.PubMedCrossRefGoogle Scholar
  42. 42.
    Tosto MG, Hanscombe KB, Haworth CMA, Davis OS, Petrill SA, Dale PS, Malykh, Plomin R, Kovas Y. Why do spatial abilities predict mathematical performance? Dev Sci. 2014;17(3):462–70.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Venneri A, Cornoldi C, Garuti M. Arithmetic difficulties in children with visuospatial learning disability (VLD). Child Neuropsychol. 2003;9(3):175–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Verdine BN, Irwin CM, Golinkoff RM, Hirsh-Pasek K. Contributions of executive function and spatial skills to preschool mathematics achievement. J Exp Child Psychol. 2014;126:37–51.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Visser J. Developmental coordination disorder: a review of research on subtypes and comorbidities. Hum Mov Sci. 2003;22:479–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Willmes K. Acalculia. In: Goldenberg G, Miller BL, editors. Handbook of clinical neurology, vol. 88 (3rd series) neuropsychology and behavioral neurology. Amsterdam: Elsevier B.V; 2008. p. 339–58.Google Scholar
  47. 47.
    Baker JM, Reiss AL. A meta-analysis of math performance in Turner syndrome. Developmental Medicine and Child Neurology. 2016;58(2):123–30.  https://doi.org/10.1111/dmcn.12961.Google Scholar
  48. 48.
    Pierpont EI, Pierpont ME, Mendelsohn NJ, Roberts AE, Tworog-Dube E, Seidenberg MS. Genotype differences in cognitive functioning in Noonan syndrome. Genes, Brain, and Behavior. 2009;8(3):275–82.  https://doi.org/10.1111/j.1601-183X.2008.00469.x.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Child PsychiatryMassachusetts General HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations