Advertisement

Inflammasomes and Autoinflammation

  • Lori BroderickEmail author
Chapter

Abstract

Inflammasomes are large intracellular multi-protein polymeric complexes comprised of sensors, adaptor proteins and caspases. As innate immune sensors capable of recognizing and rapidly responding to pathogen and metabolic danger signals, inflammasomes act as key modulators of initial immune responses. This chapter focuses on the known inflammasome complexes, how they assemble into a molecular platform for caspase-1 activation and ultimately lead to the release of pro-inflammatory cytokines in the context of the innate immune response. A brief discussion of the role for the inflammasomes in disease is included.

Keywords

Inflammasome NLR Interleukin-1 Interleukin 18 Pyrin Caspase-1 ASC 

Abbreviations

AIM2

Absent in melanoma 2

ALR

AIM2-like receptor

ANA

Antinuclear antibody

ASC

Apoptosis related speck-like protein containing CARD

ATP

Adenosine triphosphate

Bid

BH3 interacting-domain death agonist

CAPS

Cryopyrin-associated periodic syndromes

CARD

Caspase activation and recruitment domain

CRP

C-reactive protein

DAMP

Damage associated molecular patterns

FADD

Fas-associated death domain

FCAS

Familial cold autoinflammatory syndrome

FIIND

Function to find domain

FMF

Familial Mediterranean fever

GTP

Guanosine-5′-triphosphate

GWAS

Genome-wide association study

ICE

Interleukin-1β converting enzyme

IFN

Interferon

IGIF

Interferon-gamma inducing factor

IL

Interleukin

LDL

Low density lipoprotein

LPS

Lipopolysaccharide

LRRs

Leucine-rich-repeats

MAS

Macrophage-activation syndrome

MDP

Muramyl-dipeptide

MSU

Monosodium urate

NAIP

NLR family, apoptosis inhibitory protein

NASH

Nonalcoholic steatohepatitis

NBS

Nucleotide binding site

NEK

Nima-related kinase

NF-ĸB

Nuclear factor–ĸB

NLR

NOD-like receptor

NLRC

NLR family CARD domain-containing protein

NOD

Nucleotide-binding oligomerization domain

NOMID

Neonatal-onset multisystem inflammatory disease

PAMP

Pathogen-associated molecular patterns

PRR

Pattern-recognition receptors

PYD

Pyrin domain

ROS

Reactive oxygen species

SNP

Single-nucleotide polymorphism

TLR

Toll-like receptor

References

  1. 1.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.CrossRefGoogle Scholar
  2. 2.
    Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002;277(24):21119–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol. 2003;4(2):95–104.PubMedCrossRefGoogle Scholar
  4. 4.
    Ting JP, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28(3):285–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411.PubMedCrossRefGoogle Scholar
  6. 6.
    Chae JJ, Komarow HD, Cheng J, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11(3):591–604.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277(33):29874–80.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117(5):561–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171(11):6154–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.PubMedCrossRefGoogle Scholar
  12. 12.
    Bertin J, DiStefano PS. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ. 2000;7(12):1273–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Martinon F, Hofmann K, Tschopp J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol. 2001;11(4):R118–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Richards N, Schaner P, Diaz A, et al. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276(42):39320–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Fairbrother WJ, Gordon NC, Humke EW, et al. The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci. 2001;10(9):1911–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Liu T, Rojas A, Ye Y, Godzik A. Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Sci. 2003;12(9):1872–81.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G. The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol. 2003;332(5):1155–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Hiller S, Kohl A, Fiorito F, et al. NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure. 2003;11(10):1199–205.PubMedCrossRefGoogle Scholar
  19. 19.
    Eliezer D. Folding pyrin into the family. Structure. 2003;11(10):1190–1.PubMedCrossRefGoogle Scholar
  20. 20.
    Harton JA, Linhoff MW, Zhang J, Ting JP. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol. 2002;169(8):4088–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Gumucio DL, Diaz A, Schaner P, et al. Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clin Exp Rheumatol. 2002;20(4 Suppl 26):S45–53.PubMedGoogle Scholar
  22. 22.
    Manji GA, Wang L, Geddes BJ, et al. PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem. 2002;277(13):11570–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dowds TA, Masumoto J, Chen FF, Ogura Y, Inohara N, Nunez G. Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem Biophys Res Commun. 2003;302(3):575–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Masumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem. 1999;274(48):33835–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156(6):1193–206.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727–37.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25(12):1285–98.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lamkanfi M, Kanneganti TD, Van Damme P, et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008;7(12):2350–63.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Walsh JG, Logue SE, Luthi AU, Martin SJ. Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J Biol Chem. 2011;286(37):32513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386(6625):619–23.CrossRefGoogle Scholar
  35. 35.
    Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol. 2013;16(3):319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stoffels M, Zaal R, Kok N, van der Meer JW, Dinarello CA, Simon A. ATP-induced IL-1beta specific secretion: true under stringent conditions. Front Immunol. 2015;6:54.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Stein R, Kapplusch F, Heymann MC, et al. Enzymatically inactive procaspase 1 stabilizes the ASC pyroptosome and supports pyroptosome spreading during cell division. J Biol Chem. 2016;291(35):18419–29.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 2007;282(50):36321–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A. 2014;111(43):15514–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Belizario JE, Alves J, Garay-Malpartida M, Occhiucci JM. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. Curr Protein Pept Sci. 2008;9(3):210–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Eldridge MJG, Sanchez-Garrido J, Hoben GF, Goddard PJ, Shenoy AR. The atypical ubiquitin E2 conjugase UBE2L3 is an indirect caspase-1 target and controls IL-1beta secretion by inflammasomes. Cell Rep. 2017;18(5):1285–97.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Baroja-Mazo A, Martin-Sanchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–48.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Knodler LA, Crowley SM, Sham HP, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 2014;16(2):249–56.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Holzinger D, Kessel C, Omenetti A, Gattorno M. From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol. 2015;11(10):573–85.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Finger JN, Lich JD, Dare LC, et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem. 2012;287(30):25030–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bruey JM, Bruey-Sedano N, Luciano F, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007;129(1):45–56.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Faustin B, Lartigue L, Bruey JM, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–24.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Witola WH, Mui E, Hargrave A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun. 2011;79(2):756–66.PubMedCrossRefGoogle Scholar
  55. 55.
    Chavarria-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 2016;12(12):e1006052.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem. 2007;55(5):443–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhong FL, Mamai O, Sborgi L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell. 2016;167(1):187–202.e17.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Soler VJ, Tran-Viet KN, Galiacy SD, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50(4):246–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hoffman HM, Wanderer AA, Broide DH. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108(4):615–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Koonin EV, Aravind L. The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci. 2000;25(5):223–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Feldmann J, Prieur AM, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    McCall SH, Sahraei M, Young AB, et al. Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res. 2008;23(1):30–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Shigeoka AA, Mueller JL, Kambo A, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol. 2010;185(10):6277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Duncan JA, Bergstralh DT, Wang Y, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A. 2007;104(19):8041–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Stehlik C, Fiorentino L, Dorfleutner A, et al. The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med. 2002;196(12):1605–15.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    O’Connor W Jr, Harton JA, Zhu X, Linhoff MW, Ting JP. CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J Immunol. 2003;171(12):6329–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Duncan JA, Gao X, Huang MT, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182(10):6460–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fujisawa A, Kambe N, Saito M, et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. 2007;109(7):2903–11.PubMedGoogle Scholar
  71. 71.
    Willingham SB, Allen IC, Bergstralh DT, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Willingham SB, Bergstralh DT, O’Connor W, et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe. 2007;2(3):147–59.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kawashima A, Karasawa T, Tago K, et al. ARIH2 ubiquitinates NLRP3 and negatively regulates NLRP3 inflammasome activation in macrophages. J Immunol. 2017;199(10):3614–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Hernandez-Cuellar E, Tsuchiya K, Hara H, et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol. 2012;189(11):5113–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Song N, Liu ZS, Xue W, et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell. 2017;68(1):185–97.e6.PubMedCrossRefGoogle Scholar
  77. 77.
    Stutz A, Kolbe CC, Stahl R, et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med. 2017;214(6):1725–36.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Barbera-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrin P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1beta release. FASEB J. 2012;26(7):2951–62.PubMedCrossRefGoogle Scholar
  80. 80.
    He Y, Zeng MY, Yang D, Motro B, Nunez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530(7590):354–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shi H, Wang Y, Li X, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17(3):250–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Gurung P, Anand PK, Malireddi RK, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Inohara N, Ogura Y, Nunez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol. 2002;5(1):76–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Chamaillard M, Girardin SE, Viala J, Philpott DJ. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 2003;5(9):581–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.PubMedCrossRefGoogle Scholar
  86. 86.
    Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14(21):1929–34.PubMedCrossRefGoogle Scholar
  87. 87.
    Hoffman HM, Brydges SD. Genetic and molecular basis of inflammasome-mediated disease. J Biol Chem. 2011;286(13):10889–96.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hoffman HM, Wright FA, Broide DH, Wanderer AA, Kolodner RD. Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet. 2000;66(5):1693–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Muckle TJ, Wellsm. Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q J Med. 1962;31:235–48.PubMedGoogle Scholar
  90. 90.
    Hashkes PJ, Lovell DJ. Recognition of infantile-onset multisystem inflammatory disease as a unique entity. J Pediatr. 1997;130(4):513–5.PubMedGoogle Scholar
  91. 91.
    de Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561–4.PubMedCrossRefGoogle Scholar
  92. 92.
    De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 2011;32(8):373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41(1):71–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Centola M, Wood G, Frucht DM, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95(10):3223–31.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Diaz A, Hu C, Kastner DL, et al. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum. 2004;50(11):3679–89.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Matzner Y, Abedat S, Shapiro E, et al. Expression of the familial Mediterranean fever gene and activity of the C5a inhibitor in human primary fibroblast cultures. Blood. 2000;96(2):727–31.PubMedGoogle Scholar
  97. 97.
    Papin S, Cazeneuve C, Duquesnoy P, Jeru I, Sahali D, Amselem S. The tumor necrosis factor alpha-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between C/EBP beta and NF kappaB p65. J Biol Chem. 2003;278(49):48839–47.PubMedCrossRefGoogle Scholar
  98. 98.
    Masumoto J, Dowds TA, Schaner P, et al. ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun. 2003;303(1):69–73.PubMedCrossRefGoogle Scholar
  99. 99.
    Waite AL, Schaner P, Hu C, et al. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp Biol Med (Maywood). 2009;234(1):40–52.CrossRefGoogle Scholar
  100. 100.
    Hesker PR, Nguyen M, Kovarova M, Ting JP, Koller BH. Genetic loss of murine pyrin, the Familial Mediterranean Fever protein, increases interleukin-1beta levels. PLoS One. 2012;7(11):e51105.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Chae JJ, Cho YH, Lee GS, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–68.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513(7517):237–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113(33):E4857–66.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Masters SL, Lagou V, Jeru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8(332):332ra45.PubMedCrossRefGoogle Scholar
  105. 105.
    International_FMF_Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90(4):797–807.CrossRefGoogle Scholar
  106. 106.
    Moghaddas F, Llamas R, De Nardo D, et al. A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017;76(12):2085–94.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.PubMedCrossRefGoogle Scholar
  108. 108.
    Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569–75.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Miao EA, Mao DP, Yudkovsky N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107(7):3076–80.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Qu Y, Misaghi S, Newton K, et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. 2016;213(6):877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sutterwala FS, Flavell RA. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 2009;130(1):2–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Volker-Touw CM, de Koning HD, Giltay JC, et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 2017;176(1):244–8.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–59.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Levy M, Shapiro H, Thaiss CA, Elinav E. NLRP6: a multifaceted innate immune sensor. Trends Immunol. 2017;38(4):248–60.PubMedCrossRefGoogle Scholar
  116. 116.
    Chen GY, Liu M, Wang F, Bertin J, Nunez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186(12):7187–94.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045–59.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mehta R, Neupane A, Wang L, Goodman Z, Baranova A, Younossi ZM. Expression of NALPs in adipose and the fibrotic progression of non-alcoholic fatty liver disease in obese subjects. BMC Gastroenterol. 2014;14:208.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Gieger C, Radhakrishnan A, Cvejic A, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Glorioso N, Herrera VL, Didishvili T, et al. Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS One. 2013;8(10):e77562.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Okada K, Hirota E, Mizutani Y, et al. Oncogenic role of NALP7 in testicular seminomas. Cancer Sci. 2004;95(12):949–54.PubMedCrossRefGoogle Scholar
  123. 123.
    Radian AD, Khare S, Chu LH, Dorfleutner A, Stehlik C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol. 2015;67(2 Pt B):294–302.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Pinheiro AS, Proell M, Eibl C, Page R, Schwarzenbacher R, Peti W. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity. J Biol Chem. 2010;285(35):27402–10.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect. 2013;15(8–9):630–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012;36(3):464–76.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhou Y, Shah SZ, Yang L, Zhang Z, Zhou X, Zhao D. Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. PLoS One. 2016;11(4):e0152853.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–2.PubMedCrossRefGoogle Scholar
  129. 129.
    Messaed C, Akoury E, Djuric U, et al. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem. 2011;286(50):43313–23.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Mahadevan S, Wen S, Wan YW, et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014;23(3):706–16.PubMedCrossRefGoogle Scholar
  131. 131.
    Soellner L, Begemann M, Degenhardt F, Geipel A, Eggermann T, Mangold E. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur J Hum Genet. 2017;25(8):924–9.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Fiorentino L, Stehlik C, Oliveira V, Ariza ME, Godzik A, Reed JC. A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J Biol Chem. 2002;277(38):35333–40.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Williams KL, Taxman DJ, Linhoff MW, Reed W, Ting JP. Cutting edge: monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J Immunol. 2003;170(11):5354–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W. The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol. 2011;413(4):790–803.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Lich JD, Williams KL, Moore CB, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007;178(3):1256–60.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Borghini S, Tassi S, Chiesa S, et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 2011;63(3):830–9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Jeru I, Duquesnoy P, Fernandes-Alnemri T, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105(5):1614–9.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Jeru I, Le Borgne G, Cochet E, et al. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 2011;63(5):1459–64.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Allen IC, Wilson JE, Schneider M, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity. 2012;36(5):742–54.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Chen L, Wilson JE, Koenigsknecht MJ, et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol. 2017;18(5):541–51.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Linz BM, Neely CJ, Kartchner LB, et al. Innate immune cell recovery is positively regulated by NLRP12 during emergency hematopoiesis. J Immunol. 2017;198(6):2426–33.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Gharagozloo M, Mahvelati TM, Imbeault E, et al. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. J Neuroinflammation. 2015;12:198.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509–13.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–8.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol. 2013;33(5):925–37.PubMedCrossRefGoogle Scholar
  146. 146.
    Dombrowski Y, Peric M, Koglin S, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3(82):82ra38.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kopfnagel V, Wittmann M, Werfel T. Human keratinocytes express AIM2 and respond to dsDNA with IL-1beta secretion. Exp Dermatol. 2011;20(12):1027–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in the innate immune system. Science. 2010;327(5963):286–90.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of California, San DiegoSan DiegoUSA

Personalised recommendations