Advertisement

Pattern Recognition Receptors in Autoinflammation

  • Victor Saavedra
  • Fiona Moghaddas
  • Eicke LatzEmail author
  • Seth L. MastersEmail author
Chapter

Abstract

The immune system is essential for maintenance of tissue homeostasis. This task requires that immune cells detect and respond to dyshomeostatic states (when homeostasis has broken down) that can occur during invasion of the host with pathogenic microbes, after sterile trauma of tissues or during metabolic derangements. Research in the field of innate immunity has uncovered many molecular mechanisms by which the immune system can prevent the spread of infection, restore damaged tissues and respond to altered metabolism. These pathways involve different classes of pattern recognition receptors, some of which can directly detect minimal motifs (patterns) that are common to multiple pathogens or types of damaged cells. Here, we summarize the general concepts that have been developed to explain how immune recognition of dyshomeostasis is achieved and discuss our current knowledge of the innate immune signaling receptors that are known to directly bind ligands.

Keywords

Toll-like receptor (TLR) Nucleotide-binding oligomerization domain (NOD) NOD-like receptor (NLR) C-type lectin receptor (CLR) RIG-I-like receptor (RLR) Pattern recognition receptor (PRR) 

Abbreviations

ADAR1

Adenosine deaminase acting on RNA 1

AGS

Aicardi-Goutières syndrome

AIM2

Absent in melanoma 2

ASC

Apoptosis related speck-like protein containing CARD

ATP

Adenosine triphosphate

BS

Blau syndrome

CARD

Caspase activation and recruitment domain

CD

Crohn’s disease

CDN

Cyclic dinucleotides

cGAMP

Cyclic GMP-AMP

cGAS

cGAMP synthase

CLR

C-type lectin receptor

CRISPR

Clustered regularly interspaced short palindromic repeats

CTLD

C-type lectin like domain

DAMP

Damage associated molecular patterns

DAP

Diaminopimelic acid

DC-SIGN

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

dsDNA

Double-stranded DNA

dsRNA

Double-stranded RNA

EOS

Early onset sarcoidosis

FcRγ

Fc receptor gamma chain

GTP

Guanosine triphosphate

HA

Hyaluronic acid

HAMP

Homeostasis-altering molecular processes

HIN

Hematopoietic expression, interferon-inducible nature, and nuclear localization

HIV

Human immunodeficiency virus

HMGB

High mobility group box 1

HMW

High molecular weight

HSE

Herpes simplex encephalitis

HSP

Heat shock protein

IBD

Inflammatory bowel disease

IFN

Interferon

IFNAR

Interferon alpha/beta receptor 1

IKK

IκB kinase

IL

Interleukin

IRF3

Interferon regulatory factor 3

ITAM

Immunoreceptor tyrosine-based activation motif

ITIM

Immunoreceptor tyrosine-based inhibition motif

IκB

Inhibitor of NF-ĸB

JAK

Janus kinase

KO

Knock-out

LGP2

Laboratory of genetics and physiology 2

LMW

Low molecular weight

LOX-1

Lectin-like oxidized LDL receptor 1

LPS

Lipopolysaccharide

LRR

Leucine-rich-repeat

MAL

MyD88 adaptor like (= TIRAP)

MAPK

Mitogen-activated protein kinase 1

MAVS

Mitochondrial antiviral signaling

MCMV

Mouse cytomegalovirus

MD2

Myeloid differentiation factor 2

MDA5

Melanoma differentiation-associated protein 5

MDP

Muramyl dipeptide

MICL

Myeloid inhibitory C-type lectin

Mincle

Macrophage-inducible C-type lectin

miRNA

Micro RNA

mRNA

Messenger RNA

MSU

Monosodium urate

MyD88

Myeloid differentiation primary response gene 88

NBS

Nucleotide binding site

NFAT

Nuclear factor of activated T-cells

NF-ĸB

Nuclear factor–ĸB

NK

Natural killer

NLR

NOD-like receptor

NLRP

NOD-like receptor protein

NOD

Nucleotide-binding oligomerization domain

oxPAPC

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine

PAMP

Pathogen-associated molecular patterns

PBMCs

Peripheral blood mononuclear cells

pDCs

Plasmacytoid dendritic cells

PID

Primary immunodeficiency

POP

PYD-only protein

PRR

Pattern-recognition receptors

PYD

Pyrin domain

RIG-I

Retinoic acid-inducible gene 1

RIPK2

Receptor-interacting serine/threonine kinase 2

RLR

RIG-I-like receptor

RNA

Ribonucleic acid

ROS

Reactive oxygen species

SARM

Sterile α- and armadillo motif containing protein

SAVI

STING-associated vasculopathy with onset in infancy

SH2

Src homology region 2

SHP

SH2 domain-containing phosphatase

siRNA

Small interfering RNA

SMS

Singleton-Merten syndrome

SNP

Single nucleotide polymorphism

ssRNA

Single stranded RNA

STAT

Signal transducer and activator of transcription

STING

Stimulator of interferon genes

TBK1

TANK-binding kinase 1

TFAM

Mitochondrial transcription factor A

TIR

Toll/IL-1 receptor

TIRAP

TIR domain containing adaptor protein (= MAL)

TLR

Toll-like receptor

TMEM173

Transmembrane protein 173

TRAM

TRIF-related adaptor molecule

TREX

Three-prime repair exonuclease 1

TRIF

TIR-domain containing adaptor protein inducing IFN-β (=TICAM1)

tRNA

Transfer RNA

UNC93B1

Unc-93 homologue B1

WES

Whole exome sequencing

WT

Wild type

References

  1. 1.
    Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Trent MS, Stead CM, Tran AX, Hankins JV. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res. 2006;12:205–23.Google Scholar
  4. 4.
    Backhed F, Normark S, Schweda EK, et al. Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect. 2003;5:1057–63.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–78.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.Google Scholar
  7. 7.
    Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192:565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425:516–21.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.CrossRefGoogle Scholar
  12. 12.
    Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: an overview. Immunol Cell Biol. 1996;74:A1–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Elias JA, Krol RC, Freundlich B, Sampson PM. Regulation of human lung fibroblast glycosaminoglycan production by recombinant interferons, tumor necrosis factor, and lymphotoxin. J Clin Invest. 1988;81:325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sampson PM, Rochester CL, Freundlich B, Elias JA. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase. J Clin Invest. 1992;90:1492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177:1272–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17:208–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell. 1985;42:791–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Michel T, Reichhart JM, Hoffmann JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001;414:756–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.CrossRefGoogle Scholar
  21. 21.
    Bell JK, Mullen GE, Leifer CA, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 2003;24:528–33.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Botos I, Segal DM, Davies DR. The structural biology of Toll-like receptors. Structure. 2011;19:447–59.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kang JY, Lee JO. Structural biology of the Toll-like receptor family. Annu Rev Biochem. 2011;80:917–41.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem. 2007;76:141–65.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Weber AN, Moncrieffe MC, Gangloff M, et al. Ligand-receptor and receptor-receptor interactions act in concert to activate signaling in the Drosophila toll pathway. J Biol Chem. 2005;280:22793–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gay NJ, Gangloff M, Weber AN. Toll-like receptors as molecular switches. Nat Rev Immunol. 2006;6:693–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Xu Y, Tao X, Shen B, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000;408:111–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hultmark D. Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun. 1994;199:144–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hardiman G, Rock FL, Balasubramanian S, et al. Molecular characterization and modular analysis of human MyD88. Oncogene. 1996;13:2467–75.Google Scholar
  31. 31.
    Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Adachi O, Kawai T, Takeda K, et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 1998;9:143–50.CrossRefGoogle Scholar
  33. 33.
    Burns K, Martinon F, Esslinger C, et al. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem. 1998;273:12203–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wesche H, Henzel WJ, Shillinglaw W, et al. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997;7:837–47.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999;11:115–22.CrossRefGoogle Scholar
  36. 36.
    von Bernuth H, Picard C, Jin Z, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321:691–6.Google Scholar
  37. 37.
    Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol. 2001;2:835–41.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature. 2002;420:329–33.CrossRefGoogle Scholar
  39. 39.
    Yamamoto M, Sato S, Mori K, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002;169:6668–72.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Oshiumi H, Matsumoto M, Funami K, et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003;4:161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.CrossRefGoogle Scholar
  42. 42.
    Sancho-Shimizu V, Perez de Diego R, Lorenzo L, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121:4889–902.Google Scholar
  43. 43.
    Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 2003;4:1144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Fitzgerald KA, Rowe DC, Barnes BJ, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003;198:1043–55.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kagan JC, Su T, Horng T, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9:361–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Carty M, Goodbody R, Schroder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7:1074–81.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pelka K, Bertheloot D, Reimer E, et al. The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity. 2018;48:911–922.e7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature. 2008;452:234–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Brinkmann MM, Spooner E, Hoebe K, et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007;177:265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Casrouge A, Zhang SY, Eidenschenk C, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314:308–12.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A. 2000;97:13766–71.CrossRefGoogle Scholar
  52. 52.
    Vignal C, Guerardel Y, Kremer L, et al. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. J Immunol. 2003;171:2014–23.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Quesniaux VJ, Nicolle DM, Torres D, et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol. 2004;172:4425–34.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Elass E, Aubry L, Masson M, et al. Mycobacterial lipomannan induces matrix metalloproteinase-9 expression in human macrophagic cells through a Toll-like receptor 1 (TLR1)/TLR2- and CD14-dependent mechanism. Infect Immun. 2005;73:7064–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Schwandner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274:17406–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Takeuchi O, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001;13:933–40.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Schenk M, Belisle JT, Modlin RL. TLR2 looks at lipoproteins. Immunity. 2009;31:847–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kang TJ, Chae GT. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 2001;31:53–8.CrossRefGoogle Scholar
  59. 59.
    Malhotra D, Relhan V, Reddy BS, Bamezai R. TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet. 2005;116:413–5.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ogus AC, Yoldas B, Ozdemir T, et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J. 2004;23:219–23.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ben-Ali M, Barbouche MR, Bousnina S, et al. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol. 2004;11:625–6.CrossRefGoogle Scholar
  62. 62.
    Chuang T, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta. 2001;1518:157–61.CrossRefGoogle Scholar
  63. 63.
    Hasan U, Chaffois C, Gaillard C, et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 2005;174:2942–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Vogel SN, Wax JS, Perera PY, et al. Construction of a BALB/c congenic mouse, C.C3H-Lpsd, that expresses the Lpsd allele: analysis of chromosome 4 markers surrounding the Lps gene. Infect Immun. 1994;62:4454–9.Google Scholar
  65. 65.
    Watson J, Riblet R. Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic respones to lipopolysaccharides. J Exp Med. 1974;140:1147–61.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Coutinho A, Meo T. Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics. 1978;7:17–24.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Qureshi ST, Lariviere L, Leveque G, et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med. 1999;189:615–25.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998;188:2091–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189:1777–82.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wright SD. Toll, a new piece in the puzzle of innate immunity. J Exp Med. 1999;189:605–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    da Silva Correia J, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem. 2002;277:1845–54.Google Scholar
  72. 72.
    Visintin A, Mazzoni A, Spitzer JA, Segal DM. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci U S A. 2001;98:12156–61.CrossRefGoogle Scholar
  73. 73.
    Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3:667–72.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.Google Scholar
  75. 75.
    Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25:187–91.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Sebastiani G, Leveque G, Lariviere L, et al. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics. 2000;64:230–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Sebastiani G, Olien L, Gauthier S, et al. Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics. 1998;47:180–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103.Google Scholar
  79. 79.
    Andersen-Nissen E, Smith KD, Bonneau R, et al. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med. 2007;204:393–403.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Smith KD, Andersen-Nissen E, Hayashi F, et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2003;4:1247–53.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–31.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000;164:5998–6004.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Leonard JN, Ghirlando R, Askins J, et al. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci U S A. 2008;105:258–63.CrossRefGoogle Scholar
  85. 85.
    Liu L, Botos I, Wang Y, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science. 2008;320:379–81.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317:1522–7.Google Scholar
  87. 87.
    Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Krieg AM. The role of CpG motifs in innate immunity. Curr Opin Immunol. 2000;12:35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A. 2001;98:9237–42.CrossRefGoogle Scholar
  90. 90.
    Ohto U, Shibata T, Tanji H, et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature. 2015;520:702–5.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Hemmi H, Kaisho T, Takeuchi O, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3:196–200.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Lee J, Chuang TH, Redecke V, et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci U S A. 2003;100:6646–51.CrossRefGoogle Scholar
  93. 93.
    Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–31.CrossRefGoogle Scholar
  94. 94.
    Jurk M, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002;3:499.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9.CrossRefGoogle Scholar
  96. 96.
    Zhang S, Hu Z, Tanji H, et al. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol. 2018;14:58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kubli-Garfias C, Vázquez-Ramírez R, Trejo-Muñoz C, Berber A. Insights on the mechanism of action of immunostimulants in relation to their pharmacological potency. The effects of imidazoquinolines on TLR8. PLoS One. 2017;12:e0178846.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45:737–48.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tanji H, Ohto U, Shibata T, et al. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science. 2013;339:1426–9.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ting JP-Y, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bertin J, Nir WJ, Fischer CM, et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem. 1999;274:12955–8.Google Scholar
  102. 102.
    Inohara N, Koseki T, del Peso L, et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem. 1999;274:14560–7.Google Scholar
  103. 103.
    McCarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem. 1998;273:16968–75.Google Scholar
  104. 104.
    Inohara N, Koseki T, Lin J, et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem. 2000;275:27823–31.Google Scholar
  105. 105.
    Inohara N, Ogura Y, Chen FF, et al. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem. 2001;276:2551–4.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chamaillard M, Hashimoto M, Horie Y, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003;4:702–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Girardin SE, Boneca IG, Carneiro LA, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003;300:1584–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Keestra AM, Winter MG, Auburger JJ, et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature. 2013;496:233–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276:4812–8.Google Scholar
  110. 110.
    Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869–72.PubMedCrossRefGoogle Scholar
  113. 113.
    Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Blau EB. Familial granulomatous arthritis, iritis, and rash. J Pediatr. 1985;107:689–93.PubMedCrossRefGoogle Scholar
  115. 115.
    Miceli-Richard C, Lesage S, Rybojad M, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29:19–20.PubMedCrossRefGoogle Scholar
  116. 116.
    Tromp G, Kuivaniemi H, Raphael S, et al. Genetic linkage of familial granulomatous inflammatory arthritis, skin rash, and uveitis to chromosome 16. Am J Hum Genet. 1996;59:1097–107.Google Scholar
  117. 117.
    Kanazawa N, Okafuji I, Kambe N, et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood. 2005;105:1195–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Reikine S, Nguyen JB, Modis Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol. 2014;5:342.Google Scholar
  119. 119.
    Childs KS, Randall RE, Goodbourn S. LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS One. 2013;8:e64202.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rothenfusser S, Goutagny N, DiPerna G, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol. 2005;175:5260–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005;175:2851–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Hornung V, Ellegast J, Kim S, et al. 5′-triphosphate RNA is the ligand for RIG-I. Science. 2006;314:994–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Pichlmair A, Schulz O, Tan CP, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314:997–1001.PubMedCrossRefGoogle Scholar
  124. 124.
    Jiang F, Ramanathan A, Miller MT, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature. 2011;479:423–7.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kowalinski E, Lunardi T, McCarthy AA, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell. 2011;147:423–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Luo D, Ding SC, Vela A, et al. Structural insights into RNA recognition by RIG-I. Cell. 2011;147:409–22.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wu B, Peisley A, Richards C, et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell. 2013;152:276–89.PubMedCrossRefGoogle Scholar
  128. 128.
    Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Berke IC, Modis Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 2012;31:1714–26.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Peisley A, Jo MH, Lin C, et al. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc Natl Acad Sci U S A. 2012;109:E3340–9.CrossRefGoogle Scholar
  131. 131.
    Berke IC, Yu X, Modis Y, Egelman EH. MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci U S A. 2012;109:18437–41.CrossRefGoogle Scholar
  132. 132.
    Peisley A, Lin C, Wu B, et al. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A. 2011;108:21010–5.CrossRefGoogle Scholar
  133. 133.
    Zeng W, Sun L, Jiang X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 2010;141:315–30.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Jiang X, Kinch LN, Brautigam CA, et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity. 2012;36:959–73.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005;6:981–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005;437:1167–72.PubMedCrossRefGoogle Scholar
  137. 137.
    Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122:669–82.PubMedCrossRefGoogle Scholar
  138. 138.
    Xu L-G, Wang Y-Y, Han K-J, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell. 2005;19:727–40.Google Scholar
  139. 139.
    Dixit E, Boulant S, Zhang Y, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell. 2010;141:668–81.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Hou F, Sun L, Zheng H, et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011;146:448–61.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Xu H, He X, Zheng H, et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife. 2014;3:e01489.Google Scholar
  142. 142.
    Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Lässig C, Hopfner K-P. Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. J Biol Chem. 2017;292:9000–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Marques JT, Devosse T, Wang D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol. 2006;24:559–65.PubMedCrossRefGoogle Scholar
  145. 145.
    Liddicoat BJ, Piskol R, Chalk AM, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Chung H, Calis JJA, Wu X, et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell. 2018;172:811–824.e14.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ahmad S, Mu X, Yang F, et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell. 2018;172:797–810.e13.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Bruns AM, Leser GP, Lamb RA, Horvath CM. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol Cell. 2014;55:771–81.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Anchisi S, Guerra J, Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. MBio. 2015;6:e02349.Google Scholar
  150. 150.
    Lässig C, Matheisl S, Sparrer KM, et al. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. Elife. 2015;4:e10859.Google Scholar
  151. 151.
    Yao H, Dittmann M, Peisley A, et al. ATP-dependent effector-like functions of RIG-I-like receptors. Mol Cell. 2015;58:541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96–102.PubMedCrossRefGoogle Scholar
  153. 153.
    Rice GI, del Toro Duany Y, Jenkinson EM, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46:503–9.Google Scholar
  154. 154.
    Rice GI, Kasher PR, Forte GMA, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243–8.Google Scholar
  155. 155.
    Jang M-A, Kim EK, Now H, et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet. 2015;96:266–74.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Rutsch F, MacDougall M, Lu C, et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet. 2015;96:275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Ivetic A. Signals regulating L-selectin-dependent leucocyte adhesion and transmigration. Int J Biochem Cell Biol. 2013;45:550–5.CrossRefGoogle Scholar
  159. 159.
    Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47:946–53.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Ali MF, Driscoll CB, Walters PR, et al. β-glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. J Immunol. 2015;195:5318–26.PubMedCrossRefGoogle Scholar
  161. 161.
    Drummond RA, Gaffen SL, Hise AG, Brown GD. Innate defense against fungal pathogens. Cold Spring Harb Perspect Med. 2015;5:a019620.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Geijtenbeek TBH, Gringhuis SI. C-type lectin receptors in the control of T helper cell differentiation. Nat Rev Immunol. 2016;16:433–48.PubMedCrossRefGoogle Scholar
  163. 163.
    Rogers NC, Slack EC, Edwards AD, et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–17.PubMedCrossRefGoogle Scholar
  164. 164.
    Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood. 2005;106:2543–50.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol. 2012;30:491–529.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Slack EC, Robinson MJ, Hernanz-Falcón P, et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol. 2007;37:1600–12.PubMedCrossRefGoogle Scholar
  168. 168.
    Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178:3107–15.PubMedCrossRefGoogle Scholar
  169. 169.
    Gringhuis SI, den Dunnen J, Litjens M, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol. 2009;10:203–13.PubMedCrossRefGoogle Scholar
  170. 170.
    Yamasaki S, Ishikawa E, Sakuma M, et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Redelinghuys P, Brown GD. Inhibitory C-type lectin receptors in myeloid cells. Immunol Lett. 2011;136:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6:39.Google Scholar
  173. 173.
    Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science. 2012;336:1314–7.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Tang C, Kamiya T, Liu Y, et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe. 2015;18:183–97.CrossRefGoogle Scholar
  175. 175.
    Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Fernandes-Alnemri T, Yu J-W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Bürckstümmer T, Baumann C, Blüml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10:266–72.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Roberts TL, Idris A, Dunn JA, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323:1057–60.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Man SM, Karki R, Kanneganti T-D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 2016;46:269–80.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Jin T, Perry A, Jiang J, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36:561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Jin T, Perry A, Smith P, et al. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J Biol Chem. 2013;288:13225–35.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Lu A, Kabaleeswaran V, Fu T, et al. Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. J Mol Biol. 2014;426:1420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Hou X, Niu X. The NMR solution structure of AIM2 PYD domain from Mus musculus reveals a distinct α2–α3 helix conformation from its human homologues. Biochem Biophys Res Commun. 2015;461:396–400.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Stacey KJ, Ross IL, Hume DA. Electroporation and DNA-dependent cell death in murine macrophages. Immunol Cell Biol. 1993;71:75–85.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Muruve DA, Pétrilli V, Zaiss AK, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452:103–7.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Cai X, Chiu Y-H, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54:289–96.PubMedCrossRefGoogle Scholar
  187. 187.
    Cridland JA, Curley EZ, Wykes MN, et al. The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol. 2012;12:140.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Samanta H, Pravtcheva DD, Ruddle FH, Lengyel P. Chromosomal location of mouse gene 202 which is induced by interferons and specifies a 56.5 kD protein. J Interf Res. 1984;4:295–300.PubMedCrossRefGoogle Scholar
  189. 189.
    Kingsmore SF, Snoddy J, Choubey D, et al. Physical mapping of a family of interferon-activated genes, serum amyloid P-component, and alpha-spectrin on mouse chromosome 1. Immunogenetics. 1989;30:169–74.PubMedCrossRefGoogle Scholar
  190. 190.
    Landolfo S, Gariglio M, Gribaudo G, Lembo D. The Ifi 200 genes: an emerging family of IFN-inducible genes. Biochimie. 1998;80:721–8.PubMedCrossRefGoogle Scholar
  191. 191.
    Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281:99–114.CrossRefGoogle Scholar
  192. 192.
    Hara H, Tsuchiya K, Kawamura I, et al. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol. 2013;14:1247–55.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Rodgers MA, Bowman JW, Fujita H, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med. 2014;211:1333–47.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Shi C-S, Shenderov K, Huang N-N, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13:255–63.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    de Almeida L, Khare S, Misharin AV, et al. The PYRIN domain-only protein POP1 inhibits inflammasome assembly and ameliorates inflammatory disease. Immunity. 2015;43:264–76.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Khare S, Ratsimandresy RA, de Almeida L, et al. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol. 2014;15:343–53.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell. 2015;162:45–58.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Wilson JE, Petrucelli AS, Chen L, et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 2015;21:906–13.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Dihlmann S, Tao S, Echterdiek F, et al. Lack of Absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int J Cancer. 2014;135:2387–96.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Baum R, Sharma S, Carpenter S, et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J Immunol. 2015;194:873–7.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Jakobs C, Perner S, Hornung V. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One. 2015;10:e0131702.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Dombrowski Y, Peric M, Koglin S, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3:82ra38.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sun W, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 2009;106:8653–8.CrossRefGoogle Scholar
  205. 205.
    Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–92.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Burdette DL, Monroe KM, Sotelo-Troha K, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515–8.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Diner EJ, Burdette DL, Wilson SC, et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3:1355–61.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503:530–4.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498:332–7.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Li X, Shu C, Yi G, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39:1019–31.PubMedCrossRefGoogle Scholar
  213. 213.
    Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature. 2017;549:394–8.PubMedCrossRefGoogle Scholar
  214. 214.
    Li X-D, Wu J, Gao D, et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4.PubMedCrossRefGoogle Scholar
  215. 215.
    Lio C-WJ, McDonald B, Takahashi M, et al. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J Virol. 2016;90:7789–97.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Paijo J, Döring M, Spanier J, et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog. 2016;12:e1005546.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Gao D, Wu J, Wu Y-T, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341:903–6.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Lahaye X, Satoh T, Gentili M, et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity. 2013;39:1132–42.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Berg RK, Rahbek SH, Kofod-Olsen E, et al. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. PLoS One. 2014;9:e84513.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Schoggins JW, MacDuff DA, Imanaka N, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505:691–5.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Hansen K, Prabakaran T, Laustsen A, et al. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J. 2014;33:1654–66.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Andrade WA, Agarwal S, Mo S, et al. Type I interferon induction by Neisseria gonorrhoeae: dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. Cell Rep. 2016;15:2438–48.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Collins AC, Cai H, Li T, et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe. 2015;17:820–8.CrossRefGoogle Scholar
  224. 224.
    Watson RO, Bell SL, MacDuff DA, et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 2015;17:811–9.CrossRefGoogle Scholar
  225. 225.
    Wassermann R, Gulen MF, Sala C, et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe. 2015;17:799–810.CrossRefGoogle Scholar
  226. 226.
    Zhang Y, Yeruva L, Marinov A, et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. J Immunol. 2014;193:2394–404.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet. 2006;38:917–20.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Lee-Kirsch MA, Chowdhury D, Harvey S, et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med (Berl). 2007;85:531–7.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–7.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Richards A, van den Maagdenberg AMJM, Jen JC, et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39:1068–70.PubMedCrossRefGoogle Scholar
  231. 231.
    Grieves JL, Fye JM, Harvey S, et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc Natl Acad Sci U S A. 2015;112:5117–22.CrossRefGoogle Scholar
  232. 232.
    Günther C, Berndt N, Wolf C, Lee-Kirsch MA. Familial chilblain lupus due to a novel mutation in the exonuclease III domain of 3′ repair exonuclease 1 (TREX1). JAMA Dermatol. 2015;151:426–31.PubMedCrossRefGoogle Scholar
  233. 233.
    Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′-->5′ exonucleases. J Biol Chem. 1999;274:19655–60.PubMedCrossRefGoogle Scholar
  234. 234.
    Yang Y-G, Lindahl T, Barnes DE. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell. 2007;131:873–86.PubMedCrossRefGoogle Scholar
  235. 235.
    Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134:587–98.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Gall A, Treuting P, Elkon KB, et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012;36:120–31.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Ablasser A, Hemmerling I, Schmid-Burgk JL, et al. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J Immunol. 2014;192:5993–7.PubMedCrossRefGoogle Scholar
  238. 238.
    Rodero MP, Tesser A, Bartok E, et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun. 2017;8:2176.Google Scholar
  239. 239.
    Evans CJ, Aguilera RJ. DNase II: genes, enzymes and function. Gene. 2003;322:1–15.PubMedCrossRefGoogle Scholar
  240. 240.
    Kawane K, Fukuyama H, Kondoh G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science. 2001;292:1546–9.PubMedCrossRefGoogle Scholar
  241. 241.
    Yoshida H, Okabe Y, Kawane K, et al. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat Immunol. 2005;6:49–56.Google Scholar
  242. 242.
    Kawane K, Ohtani M, Miwa K, et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature. 2006;443:998–1002.PubMedCrossRefGoogle Scholar
  243. 243.
    Kawane K, Tanaka H, Kitahara Y, et al. Cytokine-dependent but acquired immunity-independent arthritis caused by DNA escaped from degradation. Proc Natl Acad Sci U S A. 2010;107:19432–7.CrossRefGoogle Scholar
  244. 244.
    Ahn J, Gutman D, Saijo S, Barber GN. STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A. 2012;109:19386–91.CrossRefGoogle Scholar
  245. 245.
    Gao D, Li T, Li X-D, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci. 2015;112:E5699–705.CrossRefGoogle Scholar
  246. 246.
    Baum R, Sharma S, Organ JM, et al. STING contributes to abnormal bone formation induced by deficiency of DNase II in mice. Arthritis Rheumatol. 2017;69:460–71.CrossRefGoogle Scholar
  247. 247.
    Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371:507–18.Google Scholar
  248. 248.
    Jeremiah N, Neven B, Gentili M, et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 2014;124:5516–20.PubMedCrossRefGoogle Scholar
  249. 249.
    Kim H, Brooks KM, Tang CC, et al. Pharmacokinetics, pharmacodynamics, and proposed dosing of the oral JAK1 and JAK2 inhibitor baricitinib in pediatric and young adult CANDLE and SAVI patients. Clin Pharmacol Ther. 2018;104(2):364–73.CrossRefGoogle Scholar
  250. 250.
    Melki I, Rose Y, Uggenti C, et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J Allergy Clin Immunol. 2017;140:543–552.e5.PubMedCrossRefGoogle Scholar
  251. 251.
    Cerboni S, Jeremiah N, Gentili M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769–85.Google Scholar
  252. 252.
    Warner JD, Irizarry-Caro RA, Bennion BG, et al. STING-associated vasculopathy develops independently of IRF3 in mice. J Exp Med. 2017;214:3279–92.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Okabe Y, Kawane K, Nagata S. IFN regulatory factor (IRF) 3/7-dependent and -independent gene induction by mammalian DNA that escapes degradation. Eur J Immunol. 2008;38:3150–8.PubMedCrossRefGoogle Scholar
  254. 254.
    Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–21.CrossRefGoogle Scholar
  255. 255.
    Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92.PubMedCrossRefGoogle Scholar
  256. 256.
    Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490:288–91.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Case CL, Kohler LJ, Lima JB, et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci U S A. 2013;110:1851–6.CrossRefGoogle Scholar
  258. 258.
    Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.Google Scholar
  259. 259.
    Rühl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur J Immunol. 2015;45:2927–36.PubMedCrossRefGoogle Scholar
  260. 260.
    Schmid-Burgk JL, Gaidt MM, Schmidt T, et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol. 2015;45:2911–7.PubMedCrossRefGoogle Scholar
  261. 261.
    Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341:1246–9.PubMedCrossRefGoogle Scholar
  262. 262.
    Aachoui Y, Leaf IA, Hagar JA, et al. Caspase-11 protects against bacteria that escape the vacuole. Science. 2013;339:975–8.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Vanaja SK, Russo AJ, Behl B, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell. 2016;165:1106–19.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Berliner JA, Subbanagounder G, Leitinger N, et al. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc Med. 2001;11:142–7.PubMedCrossRefGoogle Scholar
  265. 265.
    Leitinger N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol. 2003;14:421–30.PubMedCrossRefGoogle Scholar
  266. 266.
    Berliner JA, Watson AD. A role for oxidized phospholipids in atherosclerosis. N Engl J Med. 2005;353:9–11.PubMedCrossRefGoogle Scholar
  267. 267.
    Chu LH, Indramohan M, Ratsimandresy RA, et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun. 2018;9:996.Google Scholar
  268. 268.
    Zanoni I, Tan Y, Di Gioia M, et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science. 2016;352:1232–6.Google Scholar
  269. 269.
    O’Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol. 2013;13:453–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
  2. 2.Inflammation DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  3. 3.Department of Medical BiologyThe University of MelbourneParkvilleAustralia
  4. 4.Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.German Center for Neurodegenerative DiseasesBonnGermany

Personalised recommendations