Advertisement

Epigenetics in Autoinflammation

  • Clara Lorente-Sorolla
  • Mihai G. Netea
  • Esteban BallestarEmail author
Chapter

Abstract

The molecular mechanisms of inflammation involve a series of processes that start as extracellular signals that interact with membrane-bound receptors, cell signaling cascades, nuclear factors, and epigenetic enzymes that activate a specific gene expression program. Environmental factors and/or genetic defects can result in constitutive activation of this program. Recent studies highlight the relevance of epigenetic (dys)regulation in these processes and suggest several implications of these mechanisms and alterations in the clinical management of patients with autoinflammatory diseases. In this chapter, we provide an overview of the latest findings related to the epigenetic control in the function of myeloid cells as main effectors of inflammation, as well as the latest findings in the field of autoinflammatory diseases.

Keywords

Autoinflammation Epigenetics DNA methylation Myeloid cells 

Abbreviations

5hmC

5-hydroxymethylcytosine

5mC

5-methylcytosine

AID

Activation-induced cytidine deaminase

AIM2

Absent in melanoma 2

AP-1

Activator protein

ASC

Apoptosis-associated speck-like protein

C/EBPα

CCAAT/enhancer binding protein

CAPS

Cryopyrin-associated periodic syndromes

CD

Crohn disease

CNO

Chronic non-bacterial osteomyelitis

CREB

cAMP response element-binding protein

DAMPs

Danger-associated molecular patterns

DNMTs

DNA methyltransferases

EBF1

Early B cell factor 1

ETS

E26 transformation-specific

FCAS

Familial cold autoinflammatory syndrome

FMF

Familial Mediterranean fever

HATs

Histone acetyltransferases

HDACs

Histone deacetylases

HIDS

Hyperimmunoglobulinemia D syndrome

HMTs

Histone methyltransferases

HSCs

Hematopoietic stem cells

IKKs

IκB kinases

IL

Interleukin

IRAK

Interleukin-1 receptor-associated kinases

IRF

Interferon-regulatory factors

I-SRE

Intronic enhancer element

JmjC

Jumonji domain-containing proteins

JNK

c-Jun N-terminal kinases

LPS

Lipopolysaccharide

MAPKs

Mitogen-activated protein kinases

MKD

Mevalonate kinase deficiency

MWS

Muckle-Wells syndrome

NLR

NOD-like receptor

NOMID

Neonatal-onset multisystem inflammatory disease

PAMPs

Pathogen-associated molecular patterns

PAX5

Paired box protein 5

PGE2

Prostaglandin E2

PRRs

Pattern-recognition receptors

STAT

Signal transducer and activator of transcription

TET

Ten-eleven translocation

TNF

Tumor necrosis factor

TRAF

Tumor necrosis factor receptor-associated factor

References

  1. 1.
    Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.CrossRefGoogle Scholar
  2. 2.
    Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017;18:826–31.CrossRefGoogle Scholar
  3. 3.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140:771–6.CrossRefGoogle Scholar
  4. 4.
    Foster SL, Medzhitov R. Gene-specific control of the TLR-induced inflammatory response. Clin Immunol. 2009;130:7–15.CrossRefGoogle Scholar
  5. 5.
    Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.CrossRefGoogle Scholar
  6. 6.
    Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.CrossRefGoogle Scholar
  7. 7.
    Álvarez-Errico D, Vento-Tormo R, Ballestar E. Genetic and epigenetic determinants in autoinflammatory diseases. Front Immunol. 2017;8:318.Google Scholar
  8. 8.
    Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror Autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol. 2009;27:621–68.CrossRefGoogle Scholar
  9. 9.
    Goldbach-Mansky R, Kastner DL. Autoinflammation: the prominent role of IL-1 in monogenic autoinflammatory diseases and implications for common illnesses. J Allergy Clin Immunol. 2009;124:1141–9.CrossRefGoogle Scholar
  10. 10.
    Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.CrossRefGoogle Scholar
  11. 11.
    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.CrossRefGoogle Scholar
  12. 12.
    Ko M, An J, Rao A. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr Opin Cell Biol. 2015;37:91–101.CrossRefGoogle Scholar
  13. 13.
    Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9.CrossRefGoogle Scholar
  14. 14.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.CrossRefGoogle Scholar
  15. 15.
    Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128:707–19.CrossRefGoogle Scholar
  16. 16.
    Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2015;15:7–17.CrossRefGoogle Scholar
  17. 17.
    Ji H, Ehrlich LIR, Seita J, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467:338–42.CrossRefGoogle Scholar
  18. 18.
    Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14:673–88.CrossRefGoogle Scholar
  19. 19.
    Kallin EM, Rodríguez-Ubreva J, Christensen J, et al. Tet2 facilitates the derepression of myeloid target genes during CEBPα-Induced transdifferentiation of Pre-B cells. Mol Cell. 2012;48:266–76.CrossRefGoogle Scholar
  20. 20.
    Dominguez PM, Teater M, Chambwe N, et al. DNA methylation dynamics of germinal center B cells are mediated by AID. Cell Rep. 2015;12:2086–98.CrossRefGoogle Scholar
  21. 21.
    Andricovich J, Kai Y, Peng W, Foudi A, Tzatsos A. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis. J Clin Invest. 2016;126:905–20.CrossRefGoogle Scholar
  22. 22.
    Azagra A, Román-González L, Collazo O, et al. In vivo conditional deletion of HDAC7 reveals its requirement to establish proper B lymphocyte identity and development. J Exp Med. 2016.Google Scholar
  23. 23.
    Smale ST, Tarakhovsky A, Natoli G. Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol. 2014;32:489–511.CrossRefGoogle Scholar
  24. 24.
    Stender JD, Glass CK. Epigenomic control of the innate immune response. Curr Opin Pharmacol. 2013;13:582–7.CrossRefGoogle Scholar
  25. 25.
    Vento-Tormo R, Company C, Rodríguez-Ubreva J, et al. IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol. 2016;17:4.Google Scholar
  26. 26.
    Yang X, Wang X, Liu D, Yu L, Xue B, Shi H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol. 2014;28:565–74.CrossRefGoogle Scholar
  27. 27.
    Saeed S, Quintin J, Kerstens HHD, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345(6204):1251086.CrossRefGoogle Scholar
  28. 28.
    Stoffels M, Kastner DL. Old dogs, new tricks: monogenic autoinflammatory disease unleashed. Annu Rev Genomics Hum Genet. 2016;17:245–72.CrossRefGoogle Scholar
  29. 29.
    Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. 2017;18:832–42.CrossRefGoogle Scholar
  30. 30.
    Vento-Tormo R, Álvarez-Errico D, Garcia-Gomez A, et al. DNA demethylation of inflammasome-associated genes is enhanced in patients with cryopyrin-associated periodic syndromes. J Allergy Clin Immunol. 2017;139:202–211.e6.CrossRefGoogle Scholar
  31. 31.
    Aubert P, Suárez-Fariñas M, Mitsui H, et al. Homeostatic tissue responses in skin biopsies from NOMID patients with constitutive overproduction of IL-1β. PLoS One. 2012;7(11):e49408.CrossRefGoogle Scholar
  32. 32.
    Kirectepe AK, Kasapcopur O, Arisoy N, et al. Analysis of MEFV exon methylation and expression patterns in familial Mediterranean fever. BMC Med Genet. 2011;12:105.Google Scholar
  33. 33.
    Latsoudis H, Mashreghi MF, Grün JR, et al. Differential expression of miR-4520a associated with pyrin mutations in Familial Mediterranean Fever (FMF). J Cell Physiol. 2017;232:1326–36.CrossRefGoogle Scholar
  34. 34.
    Bekkering S, Arts RJW, Novakovic B, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell. 2018;172:135–146.e9.CrossRefGoogle Scholar
  35. 35.
    Hughes T, Ture-Ozdemir F, Alibaz-Oner F, Coit P, Direskeneli H, Sawalha AH. Epigenome-wide scan identifies a treatment-responsive pattern of altered dna methylation among cytoskeletal remodeling genes in monocytes and cd4+ t cells from patients with behçet’s disease. Arthritis Rheumatol. 2014;66:1648–58.CrossRefGoogle Scholar
  36. 36.
    Hofmann SR, Kubasch AS, Ioannidis C, et al. Altered expression of IL-10 family cytokines in monocytes from CRMO patients result in enhanced IL-1β expression and release. Clin Immunol. 2015;161:300–7.CrossRefGoogle Scholar
  37. 37.
    Franke A, McGovern DPB, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.CrossRefGoogle Scholar
  38. 38.
    Nimmo ER, Prendergast JG, Aldhous MC, et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18:889–99.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clara Lorente-Sorolla
    • 1
  • Mihai G. Netea
    • 2
    • 3
  • Esteban Ballestar
    • 1
    Email author
  1. 1.Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC)Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
  2. 2.Department of Internal Medicine, Radboudumc Expertisecenter on Immunodeficiency and AutoinflammationRadboud University Medical CenterNijmegenThe Netherlands
  3. 3.Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany

Personalised recommendations