Feature Extraction and Classification in Brain-Computer Interfacing: Future Research Issues and Challenges

  • Debashis Das Chakladar
  • Sanjay Chakraborty
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)


Brain-computer interfacing (BCI) is a communication bridge between human brain and computer. BCI system consisted of four sections (signal acquisition, signal processing, feature extraction and classifications, application Interface). In this survey paper, we try to elaborate the entire structure of BCI process especially emphasizing on feature extraction and classification area. We have briefly described different types of brain signals and their properties. For the stationary type of signal, we have used autoregressor and Fourier transform, and for nonstationary signal, we have used wavelet transformation as feature extraction policy. There have been various techniques introduced for EEG signal classification in the literature from low-cost methods (LDA, logistic regression, KNN) to computationally expensive techniques (SVM, artificial neural networks). We have also discussed ensemble and complex classifiers. In this paper, we have explained the basic concepts of all the classifiers and describe their key properties and applications. We have thoroughly analyzed all possible types of comparisons between classifiers using statistical plotting (bar chart, line chart) so that future researchers can identify the suitable classifier for a specific task. Finally, this paper deals with the various open challenges and future research issues with respect to feature extraction and classification in BCI system.



No research funding has been received for this survey work.


  1. 1.
    Abdulkader SN, Atia A, Mostafa MSM (2015) Brain computer interfacing: applications and challenges. Egyptian Inf J 16(2):213–230CrossRefGoogle Scholar
  2. 2.
    Acharya UR, Sree SV, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Exp Syst Appl 39(10):9072–9078CrossRefGoogle Scholar
  3. 3.
    Adair J, Brownlee A, Ochoa G (2017) Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces. In: Angelov P, Gegov A, Jayne C, Shen Q (eds) Advances in computational intelligence systems. Advances in intelligent systems and computing, vol 513. Springer, ChamGoogle Scholar
  4. 4.
    Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain-computer interfaces. Neural Comput Appl 23(5):1319–1327CrossRefGoogle Scholar
  5. 5.
    Akram F, Han SM, Kim TS (2015) An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Comput Biol Med 56:30–36CrossRefGoogle Scholar
  6. 6.
    Alamdari N, Haider A, Arefin R, Verma AK, Tavakolian K, Fazel-Rezai R (2016) A review of methods and applications of brain computer interface systems. In: 2016 IEEE International Conference on Electro Information Technology (EIT), May 2016. IEEE, pp 0345–0350Google Scholar
  7. 7.
    Al-Fahoum AS, Al-Fraihat AA (2014) Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. In: ISRN Neuroscience 2014Google Scholar
  8. 8.
    Aydemir O (2016) Classification of 2-dimensional cursor movement imagery EEG signals. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), June 2016. IEEE, pp 370–373Google Scholar
  9. 9.
    Bakhshi A, Ahmadifard A (2012) A comparison among classification accuracy of neural network, FLDA and BLDA in P 300-based BCI system. Int J Comput Appl 46(19):11–15Google Scholar
  10. 10.
    Bashar SK, Hassan AR, Bhuiyan MIH (2015) Identification of motor imagery movements from EEG signals using dual tree complex wavelet transform. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Aug 2015. IEEE, pp 290–296Google Scholar
  11. 11.
    Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36(1):105–139CrossRefGoogle Scholar
  12. 12.
    Bentlemsan M, Zemouri ET, Bouchaffra D, Yahya-Zoubir B, Ferroudji K (2014) Random forest and filter bank common spatial patterns for EEG-based motor imagery classification. In: 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Jan 2014. IEEE, pp 235–238Google Scholar
  13. 13.
    Bhattacharyya S, Khasnobish A, Chatterjee S, Konar A, Tibarewala DN (2010) Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data. In: 2010 International Conference on Systems in Medicine and Biology (ICSMB), Dec 2010. IEEE, pp 126–131Google Scholar
  14. 14.
    Bi L, Fan XA, Liu Y (2013) EEG-based brain-controlled mobile robots: a survey. IEEE Trans Hum-Mach Syst 43(2):161–176CrossRefGoogle Scholar
  15. 15.
    Blankertz B, Lemm S, Treder M, Haufe S, Muller KR (2011) Single-trial analysis and classification of ERP components–a tutorial. NeuroImage 56(2):814–825CrossRefGoogle Scholar
  16. 16.
    Bostanov V (2004) BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans Biomed Eng 51(6):1057–1061CrossRefGoogle Scholar
  17. 17.
    Boye AT, Kristiansen UQ, Billinger M, do Nascimento OF, Farina D (2008) Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. Biomed Signal Process Control 3(4):300–304CrossRefGoogle Scholar
  18. 18.
    Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chakraborty S, Kumar S, Paul S, Kairi A (2017) A study of product trend analysis of review datasets using Naive Bayes, K-NN and SVM classifiers. Int J Adv Eng Manag 2(9):204–213. CrossRefGoogle Scholar
  20. 20.
    Chen LL, Madhavan R, Rapoport BI, Anderson WS (2013) Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction. IEEE Trans Biomed Eng 60(3):753–762CrossRefGoogle Scholar
  21. 21.
    Chiappa S, Barber D (2006) EEG classification using generative independent component analysis. Neurocomputing 69(7):769–777CrossRefGoogle Scholar
  22. 22.
    Corralejo R, Hornero R, Alvarez D (2011) Feature selection using a genetic algorithm in a motor imagery-based brain computer interface. In: 2011 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBC, Aug 2011. IEEE, pp 7703–7706Google Scholar
  23. 23.
    Cvetkovic D, Ubeyli ED, Cosic I (2008) Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Digit Signal Process 18(5):861–874CrossRefGoogle Scholar
  24. 24.
    Darvishi S, Al-Ani A (2007) Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2007. EMBS’07. IEEE, pp 3220–3223Google Scholar
  25. 25.
    Das Chakladar D, Chakraborty S (2017) Study and analysis of a fast moving cursor Control in a multithreaded way in brain computer interface. In: CICBA Conference, KolkataGoogle Scholar
  26. 26.
    Demiralp T, Yordanova J, Kolev V, Ademoglu A, Devrim M, Samar VJ (1999) Time –frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain Lang 66(1):129–145CrossRefGoogle Scholar
  27. 27.
    Devlaminck D, Wyns B, Boullart L, Santens P, Otte G (2009) Brain-computer interfaces: from theory to practice. In: ESANNGoogle Scholar
  28. 28.
    Dey L, Chakraborty S, Biswas A, Bose B, Tiwari S (2016) Sentiment analysis of review datasets using Naive Bayes’ and K-NN classifier. Int J Inf Eng Electr Bus (IJIEEB) 8(4):54–62. Google Scholar
  29. 29.
    Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157CrossRefGoogle Scholar
  30. 30.
    Duda RO, Hart PE, Stork DG (1995) Pattern classification and scene analysis, 2nd edn. Wiley Interscience, New YorkGoogle Scholar
  31. 31.
    Fatehi TAH, Suleiman ABR (2011) Features extraction techniques of EEG signals For BCI application, pp 35–40Google Scholar
  32. 32.
    Fatourechi M, Bashashati A, Ward RK, Birch GE (2005) A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar 2005. Proceedings (ICASSP’05), vol 5. IEEE, pp v-345Google Scholar
  33. 33.
    Fazel-Rezai R, Abhari K (2008) A comparison between a matrix-based and a region-based P300 speller paradigms for brain-computer interface. In: 30th Annual International Conference of the IEEE 2008 on Engineering in Medicine and Biology Society, Aug 2008. EMBS’08. IEEE, pp 1147–1150Google Scholar
  34. 34.
    Fazel-Rezai R, Abhari K (2009) A region-based P300 speller for brain-computer interface. Can J Electr Comput Eng 34(3):81–85CrossRefGoogle Scholar
  35. 35.
    Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer series in statistics, vol 1. Springer, New York, pp 241–249Google Scholar
  36. 36.
    Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(4):463–484CrossRefGoogle Scholar
  37. 37.
    Gao JF, Yang Y, Lin P, Wang P, Zheng CX (2010) Automatic removal of eye-movement and blink artifacts from EEG signals. Brain Topogr 23(1):105–114CrossRefGoogle Scholar
  38. 38.
    Garcia GN, Ebrahimi T, Vesin JM (2003) Support vector EEG classification in the Fourier and time-frequency correlation domains. In: First International IEEE EMBS Conference on Neural Engineering, Mar 2003. Conference Proceedings. IEEE, pp 591–594Google Scholar
  39. 39.
    Garrett D, Peterson DA, Anderson CW, Thaut MH (2003) Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 11(2):141–144CrossRefGoogle Scholar
  40. 40.
    Gavett S, Wygant Z, Amiri S, Fazel-Rezai R (2012) Reducing human error in P300 speller paradigm for brain-computer interface. In: 2012 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), Aug 2012. IEEE, pp 2869–2872Google Scholar
  41. 41.
    Goswami S, Das AK, Chakrabarti A, Chakraborty B (2017) A feature cluster taxonomy based feature selection technique. Exp Syst Appl 79:76–89CrossRefGoogle Scholar
  42. 42.
    Grosse-Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng 55(8):1991–2000CrossRefGoogle Scholar
  43. 43.
    Hazrati MK, Erfanian A (2010) An online EEG-based brain-computer interfaces for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys 32(7):730–739CrossRefGoogle Scholar
  44. 44.
    Herman P, Prasad G, McGinnity TM (2006) Investigation of the type-2 fuzzy logic approach to classification in an EEG-based brain-computer interface. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, Jan 2005. IEEE-EMBS’05. IEEE, pp 5354–5357Google Scholar
  45. 45.
    Hoffmann U, Garcia G, Vesin JM, Diserens K, Ebrahimi T (2005) A boosting approach to P300 detection with application to brain-computer interfaces. In: 2nd International IEEE EMBS Conference on Neural Engineering, Mar 2005. Conference Proceedings. IEEE, pp 97–100Google Scholar
  46. 46.
    Hsu WY (2010) EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features. J Neurosci Methods 189(2):295–302CrossRefGoogle Scholar
  47. 47.
    Hsu WY, Lin CC, Ju MS, Sun YN (2007) Wavelet-based fractal features with active segment selection: application to single-trial EEG data. J Neurosci Methods 163(1):145–160CrossRefGoogle Scholar
  48. 48.
    Huan NJ, Palaniappan R (2004) Neural network classification of autoregressive features from electroencephalogram signals for brain–computer interface design. J Neural Eng 1(3):142CrossRefGoogle Scholar
  49. 49.
    Ishfaque A, Awan AJ, Rashid N, Iqbal J (2013) Evaluation of ANN, LDA and decision trees for EEG based brain computer interface. In: 2013 IEEE 9th International Conference on Emerging Technologies (ICET), Dec 2013. IEEE, pp 1–6Google Scholar
  50. 50.
    James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, New YorkCrossRefGoogle Scholar
  51. 51.
    Kaur M, Ahmed P, Rafiq MQ (2012) Technology development for unblessed people using BCI: a survey. Int J Comput Appl 40(1):18–24Google Scholar
  52. 52.
    Kayikcioglu T, Aydemir O (2010) A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn Lett 31(11):1207–1215CrossRefGoogle Scholar
  53. 53.
    Khosrowabadi R, Quek C, Ang KK, Tung SW, Heijnen M (2011) A brain-computer interface for classifying EEG correlates of chronic mental stress. In: The 2011 International Joint Conference on Neural Networks (IJCNN), July 2011. IEEE, pp 757–762Google Scholar
  54. 54.
    Kolodziej M, Majkowski A, Rak R (2011) A new method of EEG classification for BCI with feature extraction based on higher order statistics of wavelet components and selection with genetic algorithms. Adaptive and Natural Computing Algorithms, pp 280–289Google Scholar
  55. 55.
    Kottaimalai R, Rajasekaran MP, Selvam V, Kannapiran B (2013) EEG signal classification using principal component analysis with neural network in brain computer interface applications. In: 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), Mar 2013. IEEE, pp 227–231Google Scholar
  56. 56.
    Krusienski DJ, McFarland DJ, Wolpaw JR (2006) An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. In: 28th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Aug 2006. EMBS’06. IEEE, pp 1323–1326Google Scholar
  57. 57.
    Lakshmi MR, Prasad DT, Prakash DVC (2014) Survey on EEG signal processing methods. Int J Adv Res Comput Sci Softw Eng 4(1):84–91Google Scholar
  58. 58.
    Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K (2012) Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J Neurosci Methods 208(2):181–189CrossRefGoogle Scholar
  59. 59.
    Lee H, Choi S (2003) PCA+ HMM+ SVM for EEG pattern classification. In: Seventh International Symposium on Signal Processing and Its Applications, July 2003. Proceedings, vol 1. IEEE, pp 541–544Google Scholar
  60. 60.
    Li Y, Ma Z, Lu W, Li Y (2006) Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiol Meas 27(4):425CrossRefGoogle Scholar
  61. 61.
    Li Y, Guan C, Li H, Chin Z (2008) A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recogn Lett 29(9):1285–1294CrossRefGoogle Scholar
  62. 62.
    Li K, Sankar R, Arbel Y, Donchin E (2009) Single trial independent component analysis for P300 BCI system. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept 2009. EMBC’09. IEEE, pp 4035–4038Google Scholar
  63. 63.
    Lin CJ, Hsieh MH (2009) Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4):1121–1130CrossRefGoogle Scholar
  64. 64.
    Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4(2):R1CrossRefGoogle Scholar
  65. 65.
    McFarland DJ, Krusienski DJ, Wolpaw JR (2006) Brain-computer interface signal processing at the Wadsworth center: mu and sensorimotor beta rhythms. Prog Brain Res 159:411–419CrossRefGoogle Scholar
  66. 66.
    McFarland DJ, Anderson CW, Muller KR, Schlogl A, Krusienski DJ (2006) BCI meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Trans Neural Syst Rehabil Eng 14(2):135–138CrossRefGoogle Scholar
  67. 67.
    Mousavi EA, Maller JJ, Fitzgerald PB, Lithgow BJ (2011) Wavelet common spatial pattern in asynchronous offline brain computer interfaces. Biomed Signal Process Control 6(2):121–128CrossRefGoogle Scholar
  68. 68.
    Mousavi M, Koerner AS, Zhang Q, Noh E, de Sa VR (2017) Improving motor imagery BCI with user response to feedback. Brain-Comput Interfaces 4(1–2):74–86CrossRefGoogle Scholar
  69. 69.
    Muhl C, Allison B, Nijholt A, Chanel G (2014) A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Comput Interfaces 1(2):66–84CrossRefGoogle Scholar
  70. 70.
    Muller KR, Anderson CW, Birch GE (2003) Linear and nonlinear methods for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 11(2):165–169CrossRefGoogle Scholar
  71. 71.
    Mustafa M, RTaid MN, Murat ZH, Sulaiman N (2012) Comparison between KNN and ANN classification in brain balancing application via spectrogram image. JCSCM 2(4):17–22CrossRefGoogle Scholar
  72. 72.
    Nasehi S, Pourghassem H (2013) Mental task classification based on HMM and BPNN. In: 2013 International Conference on Communication Systems and Network Technologies (CSNT), Apr 2013. IEEE, pp 210–214Google Scholar
  73. 73.
    Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Exp Syst Appl 42(9):4370–4380CrossRefGoogle Scholar
  74. 74.
    Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279CrossRefGoogle Scholar
  75. 75.
    Obermaier B, Guger C, Neuper C, Pfurtscheller G (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recogn Lett 22(12):1299–1309CrossRefGoogle Scholar
  76. 76.
    Ofner P, Müller-Putz GR, Neuper C, Brunner C (2011) Comparison of feature extraction methods for brain-computer interfaces. NA.
  77. 77.
    Peterson DA, Knight JN, Kirby MJ, Anderson CW, Thaut MH (2005) Feature selection and blind source separation in an EEG-based brain-computer interface. EURASIP J Adv Signal Process 2005(19):218613CrossRefGoogle Scholar
  78. 78.
    Pires G, Castelo-Branco M, Nunes U (2008) Visual P300-based BCI to steer a wheelchair: a Bayesian approach. In: 30th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Aug 2008. EMBS’08. IEEE, pp 658–661Google Scholar
  79. 79.
    Platt JC, Nello Cristianini N, Shawe-Taylor J (2000) Large margin DAG for multiclass classification. In: Solla SA, Leen TK, Muller K-R (eds) Advances in neural information processing systems 12. MIT Press, Cambridge, MA, pp 547–553Google Scholar
  80. 80.
    Rak RJ, Kolodziej M, Majkowski A (2012) Brain-computer interface as measurement and control system the review paper. Metrol Meas Syst 19(3):427–444CrossRefGoogle Scholar
  81. 81.
    Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55(3):1147–1154CrossRefGoogle Scholar
  82. 82.
    Ramadan RA, Refat S, Elshahed MA, Ali RA (2015) Basics of brain computer interface. In: Hassanien A, Azar A (eds) Brain-computer interfaces. Intelligent systems reference library, vol 74. Springer, ChamGoogle Scholar
  83. 83.
    Rejer I (2015) Genetic algorithm with aggressive mutation for feature selection in BCI feature space. Pattern Anal Appl 18(3):485–492MathSciNetCrossRefGoogle Scholar
  84. 84.
    Roman-Gonzalez A (2012) EEG signal processing for BCI applications. In: Hippe ZS, Kulikowski JL, Mroczek T (eds) Human – computer systems interaction: backgrounds and applications 2. Advances in intelligent and soft computing, vol 98. Springer, Berlin/Heidelberg.Google Scholar
  85. 85.
    Samek W, Vidaurre C, Muller KR, Kawanabe M (2012) Stationary common spatial patterns for brain–computer interfacing. J Neural Eng 9(2):026013CrossRefGoogle Scholar
  86. 86.
    Sanei S, Chambers JA (2013) EEG signal processing. Wiley, SomersetCrossRefGoogle Scholar
  87. 87.
    Scherer R, Muller GR, Neuper C, Graimann B, Pfurtscheller G (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng 51(6):979–984CrossRefGoogle Scholar
  88. 88.
    Schlogl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2(4):L14CrossRefGoogle Scholar
  89. 89.
    Schwenk H, Bengio Y (2000) Boosting neural networks. Neural Comput 12(8):1869–1887CrossRefGoogle Scholar
  90. 90.
    Shi X, Xu G, Shen F, Zhao J (2015) Solving the data imbalance problem of P300 detection via random under-sampling bagging SVMs. In: 2015 International Joint Conference on Neural Networks (IJCNN), July 2015. IEEE, pp 1–5Google Scholar
  91. 91.
    Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Birbaumer N (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 34(4):1416–1427CrossRefGoogle Scholar
  92. 92.
    Suleiman ABR, Fatehi TAH (2007) Features extraction techniques of EEG signal for BCI applications. Faculty of Computer and Information Engineering Department College of Electronics Engineering, University of MosulGoogle Scholar
  93. 93.
    Sykacek P, Roberts SJ, Stokes M (2004) Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Trans Biomed Eng 51(5):719–727CrossRefGoogle Scholar
  94. 94.
    Thomas E, Fruitet J, Clerc M (2013) Combining ERD and ERS features to create a system-paced BCI. J Neurosci Methods 216(2):96–103CrossRefGoogle Scholar
  95. 95.
    Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG signal for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(1):24–29CrossRefGoogle Scholar
  96. 96.
    Ting W, Guo-zheng Y, Bang-hua Y, Hong S (2008) EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6):618–625CrossRefGoogle Scholar
  97. 97.
    Van Gerven M, Farquhar J, Schaefer R, Vlek R, Geuze J, Nijholt A, Desain P (2009) The brain-computer interfaces cycle. J Neural Eng 6(4):041001CrossRefGoogle Scholar
  98. 98.
    Vidaurre C, Kramer N, Blankertz B, Schlogl A (2009) Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Netw 22(9):1313–1319CrossRefGoogle Scholar
  99. 99.
    Von Bunau P, Meinecke FC, Kiraly FC, Muller KR (2009) Finding stationary subspaces in multivariate time series. Phys Rev Lett 103(21):214101CrossRefGoogle Scholar
  100. 100.
    Wang J, Xu G, Wang L, Zhang H (2010) Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models. In: 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), Oct 2010, vol 2. IEEE, pp 895–898Google Scholar
  101. 101.
    Wolpaw J, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. OUP, Oxford/New YorkGoogle Scholar
  102. 102.
    Xing S, McCardle R, Xie S (2012) Reading the mind: the potential of electroencephalography in brain computer interfaces. In: 2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nov 2012. IEEE, pp 275–280Google Scholar
  103. 103.
    Yang R, Gray DA, Ng BW, He M (2009) Comparative analysis of signal processing in brain computer interface. In: 4th IEEE Conference on Industrial Electronics and Applications, May 2009, ICIEA’09. IEEE, pp 580–585Google Scholar
  104. 104.
    Yang J, Singh H, Hines EL, Schlaghecken F, Iliescu DD, Leeson MS, Stocks NG (2012) Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif Intell Med 55(2):117–126CrossRefGoogle Scholar
  105. 105.
    Yuan H, He B (2014) Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng 61(5):1425–1435CrossRefGoogle Scholar
  106. 106.
    Zhang H, Guan C, Wang C (2008) Asynchronous P300-based brain–computer interfaces: a computational approach with statistical models. IEEE Trans Biomed Eng 55(6):1754–1763CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Debashis Das Chakladar
    • 1
  • Sanjay Chakraborty
    • 2
  1. 1.Computer Science and Engineering DepartmentInstitute of Engineering and ManagementKolkataIndia
  2. 2.Department of Information TechnologyTechno IndiaKolkataIndia

Personalised recommendations