Scaling-Up Enabling the Full Potential of Industrial Applications of Ultrasound and Hydrodynamic Cavitation

  • Jean-Marc LévêqueEmail author
  • Giancarlo Cravotto
  • François Delattre
  • Pedro Cintas
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Nowadays, the requirement for process intensification in the chemical industry no longer only meets the economic considerations but also at the necessity to anchoring the industrial production in a sustainable approach, cleaner and more energy efficient technology. As we have seen in previous chapters, the phenomenon of cavitation, whether of hydrodynamic or ultrasonic origin, is likely to generate beneficial effects recognized as conducive for scale-up operations. Technically, the extrapolation of laboratory experiments on an industrial scale consists in taking into account the numerous constraints related to the production of large quantities of materials (impurities of the raw materials, duration of process, reliability, etc.) in large reactors. Thus, the development of a production line requires the realization of a pilot unit that will solve the problems encountered during the climb to scale-up. These miniaturized replicas have variable production capacities ranging from kilogram to several tens of kilograms and can be carried out in a research unit. Therefore, many laboratories have been engaged in this way for a few years and the number of publications on pilot units, whether dedicated to ultrasonic or hydrodynamic processes, has considerably increased these last years. This chapter is meant to be didactic and is not the object of a detailed development of cavitation phenomenon scaling operations. In this sense, he is interested in the basic considerations of cavitation phenomena on the industrial scale through some reminders and representative examples.


  1. Badve M, Gogate P, Pandit A, Csoka L (2013) Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep Purif Technol 106:15–21CrossRefGoogle Scholar
  2. Cao H, Wan M, Qiao Y, Zhang S, Li R (2012) Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Ultrason Sonochem 19:257–263CrossRefGoogle Scholar
  3. Carpenter J, Badve M, Rajoriya S, George S, Saharan VK, Pandit AB (2016) Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev Chem Eng 33:433–470Google Scholar
  4. Casadonte DJ Jr, Flores M, Petrier C (2005) Enhancing sonochemical activity in aqueous media using power-modulated pulsed ultrasound: an initial study. Ultrason Sonochem 12:147–152CrossRefGoogle Scholar
  5. Cintas P, Mantegna S, Calcio Gaudino E, Cravotto G (2010) A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason Sonochem 17:985–989CrossRefGoogle Scholar
  6. Crudo D, Bosco V, Cavaglià G, Grillo G, Mantegna S, Cravotto G (2016) Process intensification in biodiesel production with a rotor-stator type generator of hydrodynamic cavitation. Ultrason Sonochem 33:220–225CrossRefGoogle Scholar
  7. De La Rochebrochard S, Suptil J, Blais JF, Naffrechoux E (2012) Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor. Ultrason Sonochem 19:280–285CrossRefGoogle Scholar
  8. Dular M, Griessler-Bulc T, Gutierez I, Heath E, Kosjek T, Krivograd Klemencic A, Oder M, Petkovšek M, Raki N, Ravnikar M, Šarc A, Širok B, Zupanc M, Zitnik M, Kompare B (2016) Use of hydrodynamic cavitation in (waste) water treatment. Ultrason Sonochem 29:577–588CrossRefGoogle Scholar
  9. Gallego-Juárez JA, Rodriguez G, Acosta V, Riera E (2010) Power ultrasonic transducers with extensive radiators for industrial processing. Ultrason Sonochem 17:953–964CrossRefGoogle Scholar
  10. Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166:1066–1082CrossRefGoogle Scholar
  11. Gonçalves I, Herrero-Yniesta V, Perales Arce I, Escrigas Castañeda M, Cavaco-Paulo A, Silva C (2014) Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrason Sonochem 21:1535–1543CrossRefGoogle Scholar
  12. Gondrexon N, Renaudin V, Petrier C, Boldo P, Bernis A, Gonthier Y (1999) Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: experimental performance and modelling. Ultrason Sonochem 5:125–131CrossRefGoogle Scholar
  13. Gonze E, Boldo P, Gonthier Y, Bernis A (1997) Étude de l’oxydation du pentachlorophénol dans différentes géométries de réacteurs à ultrasons de haute fréquence. Can J Chem Eng 75:245–255CrossRefGoogle Scholar
  14. Hunicke RL (1990) Industrial applications of high power ultrasound for chemical reactions. Ultrasonics 28:291–294CrossRefGoogle Scholar
  15. Jamshidi R, Pohl B, Peuker UA, Brenner G (2012) Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation. Chem Eng J 189–190:364–375CrossRefGoogle Scholar
  16. Kumar PS, Pandit AB (1999) Modeling hydrodynamic cavitation. Chem Eng Technol 22:1017–1027CrossRefGoogle Scholar
  17. Leong T, Coventry M, Swiergon P, Knoezer K, Juliano P (2015) Ultrasound pressure distributions generated by high frequency transducers in large reactors. Ultrason Sonochem 27:22–29CrossRefGoogle Scholar
  18. Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerkness force and bubble structures. Ultrason Sonochem 19:66–76CrossRefGoogle Scholar
  19. Masson TJ, Chemat F, Ashokkumar M (2015) Power ultrasonics for food processing. Power Ultrasonics, Elsevier Ltd, pp 815–843CrossRefGoogle Scholar
  20. Mhetre AS, Gogate PR (2014) New design and mapping of sonochemical reactor operating at capacity of 72 L. Chem Eng J 258:69–76CrossRefGoogle Scholar
  21. Pandit AB, Joshi JB (1993) Hydrolysis of fatty oils: effect of cavitation. Chem Eng Sci 48:3440–3442CrossRefGoogle Scholar
  22. Paquin M, Loranger E, Hannaux V, Chabot B, Daneault C (2013) The use of Weissler method for scale-up a kraft pulp oxidation by TEMPO-mediated system from a batch mode to a continuous flow-through sonoreactor. Ultrason Sonochem 20:103–108CrossRefGoogle Scholar
  23. Patist A, Bates D (2011) Industrial applications of high power ultrasonics. In: Ultrasound technologies for food and bioprocessing, food engineering series. Springer, New York, NY, pp 599–616Google Scholar
  24. Perincek S, Uzgur AE, Duran K, Dogan A, Korlu AE, Bahtiyari IM (2009) Design parameter investigation of industrial size ultrasound textile treatment bath. Ultrason Sonochem 16:184–189CrossRefGoogle Scholar
  25. Peshkovsky AS, Tryak S (2014) Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up. Chem Eng Process 82:132–136CrossRefGoogle Scholar
  26. Petkovšek M, Zupanc M, Dular M, Kosjek T, Heath E, Kompare B, Širok B (2013) Rotation generator of hydrodynamic cavitation for water treatment. Sep Purif Technol 118:415–423CrossRefGoogle Scholar
  27. Rinaldi L, Wu Z, Giovando S, Bracco M, Crudo D, Bosco V, Cravotto G (2017) Oxidative polymerization of waste cooking oil with air under hydrodynamic cavitation. Green Process Synth. 6:425–432Google Scholar
  28. Saracco G, Arzano F (1968) Idrogenazione di olio di oliva in presenza di ultrasuoni. La Chimica e L’Industria 50:314–316Google Scholar
  29. Smagowska B (2013) Ultrasonic noise sources in a work environment. Arch Acoust 38:169–176CrossRefGoogle Scholar
  30. Suslick KS, Mdleleni MM, Ries JT (1997) Chemistry induced by hydrodynamic cavitation. J Am Chem Soc 119:9303–9304CrossRefGoogle Scholar
  31. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249CrossRefGoogle Scholar
  32. Tiong TJ, Liew DKL, Gondipon RC, Wong RW, Loo YL, Lok MST, Manickam S (2017) Identification of active sonochemical zones in triple frequency ultrasonic reactor via physical and chemical characterization techniques. Ultrason Sonochem 35:569–576CrossRefGoogle Scholar
  33. Vanhille C, Campos-Pozuelo C (2014) Numerical simulations of the primary Bjerknes force experienced by bubbles in a standing ultrasonic field: nonlinear vs. linear. Wave Motion 51:1127–1137CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Marc Lévêque
    • 1
    Email author
  • Giancarlo Cravotto
    • 2
  • François Delattre
    • 3
  • Pedro Cintas
    • 4
  1. 1.LCME/SCeMUniversité de Savoie Mont BlancParisFrance
  2. 2.Dipartimento di Scienza e Tecnologia del FarmacoUniversitá di TorinoTurinItaly
  3. 3.Departement de ChimieUnité de Chimie Environnementale et Interactions sur le VivantDunkerqueFrance
  4. 4.Departamento Química Orgánica e Inorgánica, Facultad de CienciasUniversity of ExtremaduraBadajozSpain

Personalised recommendations