Hybrid Technologies in Action: Sonochemistry and Beyond

  • Jean-Marc LévêqueEmail author
  • Giancarlo Cravotto
  • François Delattre
  • Pedro Cintas
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


In the search for new forms of synergism, chemists have always looked for novel combinations of tools and processes that may produce improvements in efficiency and selectivity, principally, but also time frame, safety, costs and sustainability. Ultrasound has been combined with microwave heating either in loop or in flow mode or simultaneously in batch. Relevant examples are reported on the use of hybrid reactors under combined ultrasound and microwave irradiation.


  1. Carmona T, Marcelo G, Rinaldi L, Martina K, Cravotto G, Mendicuti F (2015) Soluble cyanine dye/β-cyclodextrin derivatives: potential carriers for drug delivery and optical imaging. Dyes Pigm 114:204–214CrossRefGoogle Scholar
  2. Chemat F, Poux M, Martino JLD, Berlan J (1996) An original microwave-ultrasound combined reactor suitable for organic synthesis: application to pyrolysis and esterification. J Microw Power Electromagn Energy 31:19–22CrossRefGoogle Scholar
  3. Chowdhury ZZ, Abd Hamid SB (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioResources 11:3397–3415Google Scholar
  4. Cintas P, Martina K, Robaldo B, Garella D, Boffa L, Cravotto G (2007) Improved protocols for microwave-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloadditions. Collect Czech Chem Commun 72:1014–1024CrossRefGoogle Scholar
  5. Cravotto G, Boffa L (2014) Preparation of nanomaterials under combined ultrasound/microwave irradiation. In: Sivakumar M, Muthupandian A (eds) Cavitation: a novel energy-efficient technique for the generation of nanomaterials. Pan Standfor Publishing Ltd./CRC Press, pp 203–222Google Scholar
  6. Cravotto G, Cintas P (2007) The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis. Chem Eur J 13:1903–1909CrossRefGoogle Scholar
  7. Cravotto G, Beggiato M, Penoni A, Palmisano G, Tollari S, Lévêque J-M, Bonrath W (2005) High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings. Tetrahedron Lett 46:2267–2271CrossRefGoogle Scholar
  8. Cravotto G, Orio L, Gaudino EC, Martina K, Tavor D, Wolfson A (2011) Efficient synthetic protocols in glycerol under heterogeneous catalysis. Chemsuschem 4:1130–1134CrossRefGoogle Scholar
  9. Feng H, Li Y, Lin S, Van der Eycken EV, Song G (2014) Nano Cu-catalyzed efficient and selective reduction of nitroarenes under combined microwave and ultrasound irradiation. Sustain Chem Process 2:14CrossRefGoogle Scholar
  10. Fu C et al (2014) Ultrafast chemical aerosol flow synthesis of biocompatible fluorescent carbon dots for bioimaging. J Mater Chem B 2:6978–6983CrossRefGoogle Scholar
  11. Fu J, Daanen NN, Rugen EE, Chen DP, Skrabalak SE (2017) Simple reactor for ultrasonic spray synthesis of nanostructured materials. Chem Mater 29:62–68CrossRefGoogle Scholar
  12. Ge J, Liu L, Qiu L, Jiang X, Shen Y (2016) Facile synthesis of amine-functionalized MIL-53(Al) by ultrasound microwave method and application for CO2 capture. J Porous Mater 23:857–865CrossRefGoogle Scholar
  13. Li H, Liu E-T, Chan FYF, Lu Z, Chen R (2011) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatalytic activity. Mater Lett 65:3440–3443CrossRefGoogle Scholar
  14. Li D, Wang J, Wu X, Feng C, Li X (2013a) Ultraviolet-assisted synthesis of hourglass-like ZnO microstructure through an ultrasonic and microwave combined technology. Ultrason Sonochem 20:133–136CrossRefGoogle Scholar
  15. Li Q, Li H, Wang R, Li G, Yang H, Chen R (2013b) Controllable microwave and ultrasonic wave combined synthesis of ZnO micro-/nanostructures in HEPES solution and their shape-dependent photocatalytic activities. J Alloys Compd 567:1–9CrossRefGoogle Scholar
  16. Liu Y et al (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631CrossRefGoogle Scholar
  17. Maeda M, Amemiya H (1995) Chemical effects under simultaneous irradiation by microwaves and ultrasound. New J Chemistry 19:1023–1028Google Scholar
  18. Martinez-Guerra E, Gude VG (2014) Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil. Fuel 137:100–108CrossRefGoogle Scholar
  19. Martinez-Guerra E, Gude VG (2016) Alcohol effect on microwave-ultrasound enhanced transesterification reaction. Chem Eng Process 101:1–7CrossRefGoogle Scholar
  20. Milošević OB, Mirković MK, Uskoković DP (1996) Characteristics and formation mechanism of BaTiO3 powders prepared by twin-fluid and ultrasonic spray-pyrolysis methods. J Am Ceram Soc 79:1720–1722CrossRefGoogle Scholar
  21. Palmisano G, Bonrath W, Boffa L, Garella D, Barge A, Cravotto G (2007) Heck reactions with very low ligandless catalyst loads accelerated by microwaves or simultaneous microwaves/ultrasound irradiation. Adv Synth Catal 349:2338–2344CrossRefGoogle Scholar
  22. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of Agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828CrossRefGoogle Scholar
  23. Rossi D et al (2009) Polymer-assisted solution-phase synthesis under combined ultrasound and microwave irradiation: preparation of,-unsaturated esters and carboxylic acids, key intermediates of novel sigma ligands. Synth Commun 39:3254–3262CrossRefGoogle Scholar
  24. Rugen EE, Koczkur KM, Skrabalak SE (2017) Facile synthesis of porous La-Ti-O and LaTiO2 N microspheres. Dalton Trans 46:10727–10733CrossRefGoogle Scholar
  25. Sacco M, Charnay C, De Angelis F, Radoiu M, Lamaty F, Martinez J, Colacino E (2015) Microwave-ultrasound simultaneous irradiation: a hybrid technology applied to ring closing metathesis. Rsc Adv 5:16878–16885CrossRefGoogle Scholar
  26. Safieddin SM, Hashjin TT, Ghobadian B, Najafi G, Mantegna S, Cravotto G (2015) Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green Process Synth 4(4):259–267Google Scholar
  27. Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRefGoogle Scholar
  28. Song S, Yang H, Su C, Jiang Z, Lu Z (2016) Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chem Eng J (Amsterdam) 306:504–511CrossRefGoogle Scholar
  29. Soni SS, Kotadia DA, Patel VK, Bhatt H (2014) A synergistic effect of microwave/ultrasound and symmetrical acidic ionic liquids on transesterification of vegetable oils with high free fatty acid. Biomass Convers Biorefin 4:301–309CrossRefGoogle Scholar
  30. Tsai SC, Song YL, Tsai CS, Yang CC, Chiu WY, Lin HM (2004) Ultrasonic spray pyrolysis for nanoparticles synthesis. J Mater Sci 39:3647–3657CrossRefGoogle Scholar
  31. Wang P, Zhao Y-J, Wen L-X, Chen J-F, Lei Z-G (2014) Ultrasound-microwave-assisted synthesis of MnO2 supercapacitor electrode materials. Ind Eng Chem Res 53:20116–20123CrossRefGoogle Scholar
  32. Xie J, Hse C-Y, De Hoop CF, Hu T, Qi J, Shupe TF (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohyd Polym 151:725–734CrossRefGoogle Scholar
  33. Yeneneh AM, Chong S, Sen TK, Ang HM, Kayaalp A (2013) Effect of ultrasonic, microwave and combined microwave-ultrasonic pretreatment of municipal sludge on anaerobic digester performance. Water, Air, Soil Pollut 224:1–9CrossRefGoogle Scholar
  34. Yu G-W, Nie J, Lu L-G, Wang S-P, Li Z-G, Lee M-R (2017) Transesterification of soybean oil by using the synergistic microwave-ultrasonic irradiation. Ultrason Sonochem 39:281–290CrossRefGoogle Scholar
  35. Zhang Y, Li G, Yang X, Yang H, Lu Z, Chen R (2013) Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities. J Alloy Compd 551:544–550CrossRefGoogle Scholar
  36. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Marc Lévêque
    • 1
    Email author
  • Giancarlo Cravotto
    • 2
  • François Delattre
    • 3
  • Pedro Cintas
    • 4
  1. 1.LCME/SCeMUniversité de Savoie Mont BlancParisFrance
  2. 2.Dipartimento di Scienza e Tecnologia del FarmacoUniversitá di TorinoTurinItaly
  3. 3.Departement de ChimieUnité de Chimie Environnementale et Interactions sur le VivantDunkerqueFrance
  4. 4.Departamento Química Orgánica e Inorgánica, Facultad de CienciasUniversity of ExtremaduraBadajozSpain

Personalised recommendations