Advertisement

Gone with the Flow: Miniaturization and Safer Chemistry

  • Jean-Marc Lévêque
  • Giancarlo Cravotto
  • François Delattre
  • Pedro Cintas
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Like other enabling technologies, ultrasonication has moved progressively from batch to flow conditions, which are more suitable for large-scale applications and industrial purposes. Without discussing comprehensively, the subject of sonochemistry underflow, this chapter provides some background and practical considerations with a focus on chemical synthesis in following the heading of this monograph. A deeper analysis is presented for miniaturized systems as microfluidics and machine-assisted approaches will doubtless be the future of chemistry. Ultrasound in microchannels helps to prevent clogging while enhancing considerably mass transfer. Moreover, such applications will require the design of more efficient micro-sonoreactors and an accurate control of external parameters.

References

  1. Aljbour S, Yamada H, Tagawa T (2009) Ultrasound-assisted phase-transfer catalysis in a capillary microreactor. Chem Eng Process 48:1167–1172CrossRefGoogle Scholar
  2. Banaszak-Léonard E, Mangin F, Len C (2016) Barton decarboxylation under ultrasonic continuous flow. New J Chem 40:7414–7420CrossRefGoogle Scholar
  3. Bolaños-Jiménez R, Rossi M, Fernandez Rivas D, Kähler CJ, Marin A (2017) Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry. J Fluid Mech 820:529–548CrossRefGoogle Scholar
  4. Britton J, Jamison TF (2017) The assembly and use of continuous flow systems for chemical synthesis. Nat Protoc 12:2423–2446CrossRefGoogle Scholar
  5. Britton J, Raston CL (2017) Multi-step continuous flow synthesis. Chem Soc Rev 46:1250–1271CrossRefGoogle Scholar
  6. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB et al (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002 (1–59)Google Scholar
  7. Bruus H (2012) Acoustofluidics 10: scaling lows in acoustophoresis. Lab Chip 12:1578–1586CrossRefGoogle Scholar
  8. Calcio Gaudino E, Carnaroglio D, Boffa L, Cravotto G, Moreira EM, Nunes MAG, Dressler VL, Flores EMM (2014) Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors. Ultrason Sonochem 21:283–288CrossRefGoogle Scholar
  9. Cantillo D, Damm M, Dallinger D, Bauser M, Berger M, Kappe CO (2014) Sequential nitration/hydrogenation protocol for the synthesis of triaminophloroglucinol: safe generation and use of an explosive intermediate under continuous-flow conditions. Org Process Res Dev 18:1360–1366CrossRefGoogle Scholar
  10. Castro F, Kuhn S, Jensen KF, Ferreira A, Rocha F, Vicente A, Teixeira JA (2013) Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems. Chem Eng J 215–216:979–987CrossRefGoogle Scholar
  11. Chatel G (2017) Sonochemistry. New opportunities for green chemistry. World Scientific Publishing, London, Chap. 4, pp 51–57, Chap. 6, p 151Google Scholar
  12. Cintas P, Mantegna S, Calcio Gaudino E, Cravotto G (2010) A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason Sonochem 17:985–989CrossRefGoogle Scholar
  13. Elvira KSI, Solvas XC, Wooton RCR, Demello AJ (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 5:905–915CrossRefGoogle Scholar
  14. Fernandez Rivas D, Kuhn S (2016) Synergy of microfluidics and ultrasound. Process intensification, challenges and opportunities. Top Curr Chem 374:70 (1–30)Google Scholar
  15. Fernandez Rivas D, Prosperetti A, Zijlstra AG, Lohse D, Gardeniers HJGE (2010) Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew Chem Int Ed 49:9699–9701CrossRefGoogle Scholar
  16. Fernandez Rivas D, Cintas P, Gardeniers HJGE (2012a) Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors. Chem Commun 48:10935–10947CrossRefGoogle Scholar
  17. Fernandez Rivas D, Ashokkumar M, Leong T, Yasui K, Tuziuti T, Kentish S et al (2012b) Sonoluminescence and sonochemiluminescence from a microreactor. Ultrason Sonochem 19:1252–1259CrossRefGoogle Scholar
  18. Fernandez Rivas D, Verhaagen B, Seddon JRT, Zijlstra AG, Jiang LM, van der Sluis LWM et al (2012c) Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles. Biomicrofluidics 6:034114CrossRefGoogle Scholar
  19. Fernandez Rivas D, Stricker L, Zijlstra AG, Gardeniers HJGE, Lohse D, Prosperetti A (2013a) Ultrasound artificially nucleated bubbles and their sonochemical radical production. Ultrason Sonochem 20:510–524CrossRefGoogle Scholar
  20. Fernandez Rivas D, Betjes J, Verhaagen B, Bouwhuis W, Bor TC, Lohse D, Gardeniers HJGE (2013b) Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles. J Appl Phys 113:064902CrossRefGoogle Scholar
  21. Fitzpatrick DE, Battilochio C, Ley SV (2016) Enabling technologies for the future of chemical synthesis. ACS Cent Sci 2:131–138CrossRefGoogle Scholar
  22. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647CrossRefGoogle Scholar
  23. Günther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503CrossRefGoogle Scholar
  24. Gutmann B, Cantillo D, Kappe CO (2015) Continuous flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728CrossRefGoogle Scholar
  25. Hughes DL (2018) Applications of flow chemistry in drug development: highlights of recent patent literature. Org Process Res Dev.  https://doi.org/10.1021/acs.oprd.7b00363 (in press)CrossRefGoogle Scholar
  26. Ingham RJ, Battilochio C, Fitzpatrick DE, Sliwinski E, Hawkins JM, Ley SV (2015) A systems approach towards intelligent and self-controlling platform for integrated continuous reaction sequences. Angew Chem Int Ed 54:144–148CrossRefGoogle Scholar
  27. Jensen KF (2017) Flow chemistry-microreaction technology comes of age. AIChE J 63:858–869CrossRefGoogle Scholar
  28. Kaminski TS, Garstecki P (2017) Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 46:6210–6226CrossRefGoogle Scholar
  29. Kashid MN, Gerlach I, Goetz S, Franzke J, Acker JF, Platte F, Agar DW, Turek S (2005) Internal circulation within the liquid slugs of a liquid–liquid slug-flow capillary microreactor. Ind Eng Chem Res 44(14):5003–5010CrossRefGoogle Scholar
  30. Kuhn S, Noël T, Gu L, Heider PL, Jensen KF (2011) A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions. Lab Chip 11:2488–2492CrossRefGoogle Scholar
  31. Kulkarni K, Friend J, Yeo L, Perlmutter P (2009) Surface acoustic waves as an emerging source for drop scale synthetic chemistry. Lab Chip 9:754–755CrossRefGoogle Scholar
  32. Kulkarni K, Ramarathinam SH, Friend J, Yeo L, Purcell AW, Perlmutter P (2010) Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves. Lab Chip 10:1518–1520CrossRefGoogle Scholar
  33. Lee YH, Li PH (2017) Using resonant ultrasound field-incorporated dynamic photobioreactor system to enhance medium replacement process for concentrated microalgae cultivation in continuous mode. Chem Eng Res Des 118:112–120CrossRefGoogle Scholar
  34. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210–1223CrossRefGoogle Scholar
  35. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900CrossRefGoogle Scholar
  36. Lin H, Dai C, Jamison TF, Jensen KF (2017) A rapid total synthesis of ciprofloxacin hydrochloride in continuous flow. Angew Chem Int Ed 56:8870–8873CrossRefGoogle Scholar
  37. Lohse D (2005) Sonoluminescence: cavitation hots up. Nature 434:33–34CrossRefGoogle Scholar
  38. Nagy KD, Shen B, Jamison TF, Jensen KF (2012) Mixing and dispersion in small-scale flow systems. Org Process Res Dev 16:976–981CrossRefGoogle Scholar
  39. Navarro-Brull FJ, Poveda P, Ruiz-Femenia R, Bonete P, Ramis J, Gómez R (2014) Guidelines for the design of efficient sono-microreactors. Green Process Synth 3:311–320Google Scholar
  40. Peshkovsky AS, Bystryak S (2014) Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: process scale-up. Chem Eng Process 82:132–136CrossRefGoogle Scholar
  41. Porta R, Benaglia M, Puglisi A (2016) Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev 20:2–25CrossRefGoogle Scholar
  42. Rossi D, Jamshidi R, Saffari N, Kuhn S, Gavriilidis A, Mazzei L (2015) Continuous-flow sonocrystallization in droplet-based microfluidics. Cryst Growth Des 15:5519–5529CrossRefGoogle Scholar
  43. Tandiono T, Ow DSW, Driessen L, Chin CSH, Klaseboer E, Choo ABH, Ohl SW, Ohl CD (2012) Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab Chip 12:780–786CrossRefGoogle Scholar
  44. Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313CrossRefGoogle Scholar
  45. Vinatoru M, Mason T (2017) Comments on the use of loop reactors in sonochemical processes. Ultrason Sonochem 39:240–242CrossRefGoogle Scholar
  46. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  47. Wiles C, Watts P (2014) Continuous process technology: a tool for sustainable production. Green Chem 16:55–62CrossRefGoogle Scholar
  48. Yoshida JI, Takahashi Y, Nagaki A (2013) Flash chemistry: flow chemistry that cannot be done in batch. Chem Commun 49:9896–9904CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Marc Lévêque
    • 1
  • Giancarlo Cravotto
    • 2
  • François Delattre
    • 3
  • Pedro Cintas
    • 4
  1. 1.LCME/SCeMUniversité de Savoie Mont BlancParisFrance
  2. 2.Dipartimento di Scienza e Tecnologia del FarmacoUniversitá di TorinoTurinItaly
  3. 3.Departement de ChimieUnité de Chimie Environnementale et Interactions sur le VivantDunkerqueFrance
  4. 4.Departamento Química Orgánica e Inorgánica, Facultad de CienciasUniversity of ExtremaduraBadajozSpain

Personalised recommendations